精英家教网 > 高中数学 > 题目详情
5.变量x、y满足条件$\left\{\begin{array}{l}x-y+1≤0\\ y≤1\\ x>-1\end{array}\right.$,则(x-2)2+y2的最小值为(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\sqrt{5}$C.5D.$\frac{9}{2}$

分析 作出不等式组对应的平面区域,设z=(x-2)2+y2,利用距离公式进行求解即可.

解答 解:作出不等式组对应的平面区域,
设z=(x-2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,
由图象知CD的距离最小,此时z最小.
由$\left\{\begin{array}{l}{y=1}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即C(0,1),
此时z=(x-2)2+y2=4+1=5,
故选:C.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义以及两点间的距离公式,利用数形结合是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知全集U=R,集合A={x||x|<1},B={x|x>-$\frac{1}{2}$},则A∪B={x|x>-1},A∩B={x|-$\frac{1}{2}$<x<1},(∁UB)∩A={x|x|-1<x≤-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的表面积是(  )
A.16+8$\sqrt{3}$B.16+4$\sqrt{3}$C.48+8$\sqrt{3}$D.48+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-2|x+a|+3a(a∈R).
(1)若函数f(x)的图象关于y轴对称,求实数a的值;
(2)设a=-$\frac{1}{4}$,求f(x)的单调增区间;
(3)设函数g(x)=2x,若对任意x1≤0,存在x2∈[-3,+∞],有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义[x]表示不超过x的最大整数,如[0.5]=0,[-2.5]=-3,若f(x)=cos(x-[x]),给出下列结论:
①y=f(x)为偶函数;
②y=f(x)为周期函数且周期为1;
③当x∈[0,1),f(x)是单调递增函数;
④y=f(x)的最大值是1,最小值是cos1;
⑤y=f(x)的最大值是1,无最小值.
其中正确结论的序号是②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四种说法中,正确的个数有
①命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x∈R,使得x2-3x-2≤0”
②“命题p∨q为真”是“命题p∧q为真”的必要不充分条件;
③?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是幂函数,且在(0,+∞)上是单调递增
④若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,..2xn的方差为2(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.展开(a+b+c)10合并同类项后的项数是(  )
A.11B.66C.76D.134

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在($\sqrt{2}$,+∞)上是减函数,则a的取值范围是(  )
A.[2$\sqrt{2}$,4)B.[2$\sqrt{2}$,$\sqrt{2}$+2]C.(-∞,2$\sqrt{2}$]D.[2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果$\overrightarrow{a}$、$\overrightarrow{b}$是单位向量,其夹角为$\frac{π}{2}$,且$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=k$\overrightarrow{a}$-4$\overrightarrow{b}$,$\overrightarrow{c}$⊥$\overrightarrow{d}$,则k=(  )
A.6B.-6C.3D.-3

查看答案和解析>>

同步练习册答案