精英家教网 > 高中数学 > 题目详情
已知sinα+cosα=
2
,求sinαcosα及sin4α+cos4α
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:将已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系化简,求出sinαcosα的值,sin4α+cos4α利用完全平方公式变形,将各自的值代入计算即可求出值.
解答: 解:∵sinα+cosα=
2

∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2,
整理得:1+2sinαcosα=2,即sinαcosα=
1
2

则sin4α+cos4α=(sin2α+cos2α)2-2sin2αcos2α=1-2(sinαcosα)2=1-
1
2
=
1
2
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把下面求n!( n!=n×(n-1)×…×3×2×1 )的程序补充完整
 
“n=”;n
i=1
s=1
WHILE
 

 

 i=i+1
WEND
PRINT  s
END.

查看答案和解析>>

科目:高中数学 来源: 题型:

停车场一排12个车位,停8辆车,空位连在一起的概率为(  )
A、
2
3
B、
1
55
C、
24
55
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式(x-2)(ax-2)>0(a≥0)

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(
π
3
+α)=-
1
3
,求cos(
π
6
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某体育馆拟用运动场的边角地建一个矩形的健身室(如图所示),ABCD是一块边长为50m的正方形地皮,扇形CEF是运动场的一部分,其半径为40m,矩形AGHM就是拟建的健身室,其中G、M分别在AB和AD上,设矩形AGHM的面积为S,∠HCF=θ,请将S表示为θ的函数,并指出当点H在何处时,该健身室的面积最大,最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2,g(x)=2lnx.
(Ⅰ)设h(x)=f(x)-g(x),求h(x)的最小值.
(Ⅱ)上下平移f(x)的图象为c个单位,当c为何值时,f(x)平移后的图象与g(x)的图象有公共点且在公共点处切线相同.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(-3,4),B(3,2),过点P(2,-1)的直线l与线段AB有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sinx在区间[-
π
6
6
]
上的值域为
 

查看答案和解析>>

同步练习册答案