精英家教网 > 高中数学 > 题目详情
设一个焦点为(-1,0),且离心率e=
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上下两顶点分别为A,B,直线y=kx+2交椭圆C于P,Q两点,直线PB与直线y=
1
2
交于点M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:A,M,Q三点共线.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由已知条件推导出
c=1
c
a
=
2
2
,由此能求出椭圆C的方程.
(Ⅱ)联立
y=kx+2
x2
2
+y2=1
,得(2k2+1)x2+8kx+6=0,由此利用韦达定理、直线方程,结合已知条件能证明A,M,Q三点共线.
解答: (Ⅰ)解:∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
一个焦点为(-1,0),
且离心率e=
2
2

c=1
c
a
=
2
2
,解得a=
2
,c=1,
∴b2=a2-c2=2-1=1,
∴椭圆C的方程为
x2
2
+y2=1

(Ⅱ)证明:联立
y=kx+2
x2
2
+y2=1
,得(2k2+1)x2+8kx+6=0,
△=64k2-24(2k2+1)>0,
设P(x1,y1),Q(x2,y2),则x1 +x2=-
8k
2k2+1
,x1x2=
6
2k2+1

∵A(0,1),B(0,-1),
∴直线BP:y+1=
y1+1
x1
x
,直线AQ:y-1=
y2-1
x2
x
 

∵直线PB与直线y=
1
2
交于点M,∴M(
3
2
x1
y1+1
1
2
),
把M(
3
2
x1
y1+1
1
2
)代入直线AQ,得:
-
1
2
=
y2-1
x2
3
2
x1
y1+1

=
3
2
x1y2-x1
x2y1+x2

=
3
2
x1(kx2+2)-x1
x2(kx1+2)+x2

=
3
2
kx1x2+x1
kx1x2+3x2

=
3
2
6k
2k2+1
+x1
6k
2k2+1
+3x2

=
3
2
6k+(2k2+1)x1
6k+(6k2+3)x2

=
3
2
-2k-(2k2+1)x2
6k+(6k2+3)x2

=-
1
2
,成立.
∴A,M,Q三点共线.
点评:本题考查椭圆方程的求法,考查三点共线的证明,解题时要认真审题,注意直线方程、韦达定理、椭圆性质等知识点的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查发现,y与x具有相关关系,回归方程为
y
=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为(  )
A、83%B、72%
C、67%D、66%

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明1+a+a2+…+an+1=
1-an+2
1-a
(a≠1,n∈N*),在验证当n=1时,等式左边应为(  )
A、1
B、1+a
C、1+a+a2
D、1+a+a2+a3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+
2
=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足
OA
+
OB
=t
OP
(其中O为坐标原点),求整数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P=ABCD中,E为AD上一点,面PAD⊥面ABCD,四边形BCDE为矩形∠PAD=60°,PB=2
3
,PA=ED=2AE=2.
(Ⅰ)已知
PF
PC
(λ∈R),且PA∥面BEF,求λ的值;
(Ⅱ)求证:CB⊥平面PEB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°PA⊥平面,PA=4,AD=2,AB=2
3
,BC=6.
(Ⅰ)求证:BD⊥平面PAC
(Ⅱ)求二面角P-BD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
2
2
cosα+
2
2
sinα=
1
4
,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
OA
=(λcosα,λsinα)(λ≠0),
OB
=(-sinβ,cosβ),其中O为坐标原点.
(1)若∠B=α-30°,求
OA
OB
的夹角;
(2)若|
AB
|≥|
OB
|,对于任意实数α、β都成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n项和为Sn,n∈N*
(1)证明数列{
1
bn
}
为等差数列,并求数列{bn}的通项公式;
(2)用数学归纳法证明:对任意的n∈N*,有1+
n
2
S2n
1
2
+n成立.

查看答案和解析>>

同步练习册答案