精英家教网 > 高中数学 > 题目详情
用数学归纳法证明1+a+a2+…+an+1=
1-an+2
1-a
(a≠1,n∈N*),在验证当n=1时,等式左边应为(  )
A、1
B、1+a
C、1+a+a2
D、1+a+a2+a3
考点:数学归纳法
专题:点列、递归数列与数学归纳法
分析:由数学归纳法即可得出.
解答: 解:在验证当n=1时,等式左边应为1+a+a2
故选:C.
点评:本题考查了数学归纳法证题的步骤,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,程序执行后的结果是(  )
A、3,5B、5,3
C、5,5D、3,3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列等式中,使M,A,B,C四点共面的个数是(  )
OM
=
OA
-
OB
-
OC

OM
=
1
5
OA
+
1
3
OB
+
1
2
OC

MA
+
MB
+
MC
=
0

OM
+
OA
+
OB
+
OC
=
0
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

因为无理数是无限小数,而π是无理数,所以π是无限小数.属于哪种推理(  )
A、合情推理B、演绎推理
C、类比推理D、归纳推理

查看答案和解析>>

科目:高中数学 来源: 题型:

目标函数z=2x+y,变量x,y满足
2x-y≥0
x-y≤0
x+y-3≥0
,则有(  )
A、zmax=
9
2
,zmin=4
B、zmax=
9
2
,z无最小值
C、zmin=4,z无最大值
D、z既无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,以为π最小正周期的偶函数,且在(0,
π
2
)内递增的是(  )
A、y=sin|x|
B、y=|sinx|
C、y=|cosx|
D、y=cos|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an+1=
2n+1an
an+2n
(n∈N+
(1)证明:数列{
2n
an
}是等差数列;           
(2)求数列{an}的通项公式an
(3)设bn=(2n-1)(n+1)an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设一个焦点为(-1,0),且离心率e=
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上下两顶点分别为A,B,直线y=kx+2交椭圆C于P,Q两点,直线PB与直线y=
1
2
交于点M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:A,M,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)满足f(2x)=2x+1+1,定义数列{an},a1=1,an+1=f(an)-1,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案