精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|x>0},B={x|-1<x<5}则A∩B=(  )
A.{x|x>-1}B.{x|-1<x<5}C.{x|0<x<5}D.{x|x<5}

分析 由A与B,求出两集合的交集即可.

解答 解:A={x|x>0},B={x|-1<x<5},
∴A∩B={x|0<x<5},
故选:C.

点评 本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某家庭进行理财投资,投资债券产品的收益f(x)与投资额x成正比,投资股票产品的收益g(x)与投资额x的算术平方根成正比,已知投资1万元时两类产品的收益分别是0.125万元和0.5万元.
(1)分别写出两种产品的收益与投资的函数关系式;
(2)该家庭现有20万资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xoy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上,且$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R).
(Ⅰ)若$m=n=\frac{1}{3}$,求|$\overrightarrow{OP}$|;      
(Ⅱ)用x,y表示m-n,并求m-n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.对于数列{an},若?m,n∈N*(m≠n),都有$\frac{{a}_{m}-{a}_{n}}{m-n}$≥t(t为常数)成立,则称数列{an}具有性质P(t).
(1)若数列{an}的通项公式为an=2n,且具有性质P(t),则t的最大值为2;
(2)若数列{an}的通项公式为an=n2-$\frac{a}{n}$,且具有性质P(10),则实数a的取值范围是[36,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y=\sqrt{lgx}+lg(5-3x$)的定义域是(  )
A.[0,$\frac{5}{3}$ )B.[0,$\frac{5}{3}$]C.[1,$\frac{5}{3}$ )D.[1,$\frac{5}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=$\frac{x-1}{x+1}$,则f(x)+f($\frac{1}{x}$)=(  )
A.$\frac{x-1}{x+1}$B.$\frac{1}{x}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-4x-21=0},B={x|5x-a≥3x+2,a∈R}.
(1)用列举法表示集合A;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有甲、乙两种商品,经营这两种商品所能获得的利润分别为p(单位:万元)和q(单位:万元),它们与投入资金M(单位:万元)的关系有近似满足下列公式,p=$\frac{1}{5}$M,Q=$\frac{3}{5}$$\sqrt{M}$.现有a(a>0)万元资金投入经营两种商品,为获得最大的利润,应对这两种商品分别投入资金多少万元?获得的最大利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求经过圆(x-1)2+(y-1)2=1外的一点P(2,3)向圆所引的切线方程.

查看答案和解析>>

同步练习册答案