精英家教网 > 高中数学 > 题目详情
已知f(x)=cos(2x-
π
3
)+sin2x-cos2x
(1)求f(x)的对称轴及对称中心;
(2)若f(α)=
3
5
,2α是第二象限角,求sin2α的值.
考点:三角函数中的恒等变换应用,二倍角的正弦
专题:三角函数的求值,三角函数的图像与性质
分析:(1)将三角函数进行化简,根据三角函数的图象和性质即可求f(x)的对称轴及对称中心;
(2)利用三角函数的倍角公式进行化简即可得到结论.
解答: 解:f(x)=cos(2x-
π
3
)+sin2x-cos2x=
1
2
cos2x+
3
2
sin2x-cos2x
=
3
2
sin2x-
1
2
cos2x=sin(2x-
π
6
)

(1)由2x-
π
6
=2kπ+
π
2
,k∈Z,得x=
π
12
+
2

由 2x-
π
6
=kπ
得x=
π
12
+
2

故f(x)的对称轴为x=
π
12
+
2
;对称中心为(
π
12
+
2
,0).
(2)若f(α)=
3
5
,即sin(2α-
π
6
)=
3
5

cos(2α-
π
6
)=±
1-sin2(2α-
π
6
)
4
5

又2α在第二象限,即2α∈(2kπ+
π
2
,2k+π),k∈Z

2α-
π
6
∈(2kπ+
π
3
,2k+
5
6
π),k∈Z

从而有-
3
2
<cos(2α-
π
6
)<
1
2

所以cos(2α-
π
6
)=-
4
5

sin2α=sin[(2α-
π
6
)+
π
6
]=sin(2α-
π
6
)cos
π
6
+cos(2α-
π
6
)sin
π
6
=
3
3
-4
10
点评:本题主要考查三角函数的图象和性质,以及三角函数求值,利用三角公式进行化简是解决本题的关键.要求熟练掌握三角函数的图象和性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M,N分别是A1C1,BC1的中点.
(1)求证:MN∥平面A1ABB1
(2)求多面体M-B1C1B的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(
3
3
2
),椭圆C左右焦点分别为F1,F2,上顶点为E,△EF1F2为等边三角形.定义椭圆C上的点M(x0,y0)的“伴随点”为N(
x0
a
y0
b
).
(1)求椭圆C的方程;
(2)求tan∠MON的最大值;
(3)直线l交椭圆C于A、B两点,若点A、B的“伴随点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的极坐标方程为
2
ρ=4sin(θ+
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=3+t
y=1-2t
,(t为参数)
(Ⅰ)将圆C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;
(Ⅱ)判断直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(e为自然对数的底),g(x)=ln(f(x)+a)(a为常数),g(x)是实数集R上的奇函数.
(1)求证:f(x)≥x+1(x∈R);
(2)讨论关于x的方程:lng(x)=g(x)•(x2-2ex+m)(m∈R)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆F:
x2
a2
-
y2
b2
=1(a>b>0)经过D(2,0),E(1,
3
2
)两点.
(I)求椭圆F的方程;
(Ⅱ)若直线l:y=kx+m与F交于不同两点A,B,点G是线段AB中点,点O为坐标原点,设射线OG交F于点Q,且
OQ
=2
OG

①证明:4m2=4k2+1;
②求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+4n(n∈N*).
(1)求数列{an}的通项公式;
(2)若b1=3,且bn+1-bn=an(n∈N*),求数列{
1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2cosx+2
3
sinx,1),
b
=(y,cosx),且
a
b

(1)将y表示成x的函数f(x),并求f(x)的最小正周期;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(B)=3,
BA
BC
=
9
2
,且a+c=3+
3
,求边长b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤4},B={x|x<a},且满足A∩B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案