精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为(1,0),离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的左焦点且斜率为k的直线l与椭圆C交于M、N两点.
(i)若以MN为直径的圆过坐标原点O,求k的值;
(ii)若P(-1,2),求△MNP面积的最大值.

分析 (Ⅰ)运用椭圆的离心率公式和a,b,c的关系,解得a,b,进而得到椭圆方程;
(Ⅱ)(i)设出直线l的方程为y=k(x+1),代入椭圆方程,可得x的方程,设M(x1,y1),N(x2,y2),运用韦达定理,再由以MN为直径的圆过坐标原点O,可得OM⊥ON,即有$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,即x1x2+y1y2=0,由M,N的坐标满足直线方程,代入化简,代入韦达定理,解方程可得k的值;
(ii)运用弦长公式可得|MN|,运用点到直线的距离公式,可得P到直线l的距离,运用三角形的面积公式化简整理,运用换元法,结合函数的单调性,即可得到所求最大值.

解答 解:(Ⅰ)由题意可得c=1,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
解得a=$\sqrt{2}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
即有椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1;
(Ⅱ)(i)由左焦点(-1,0),可设直线l的方程为y=k(x+1),
代入椭圆方程x2+2y2=2,可得(1+2k2)x2+4k2x+2k2-2=0,
设M(x1,y1),N(x2,y2),即有x1+x2=-$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$,
由以MN为直径的圆过坐标原点O,可得OM⊥ON,
即有$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,即x1x2+y1y2=0
即x1x2+k2(x1+1)(x2+1)=0,
即为(1+k2)x1x2+k2+k2(x1+x2)=0,
代入韦达定理,可得(1+k2)(-$\frac{4{k}^{2}}{1+2{k}^{2}}$)+k2+k2•$\frac{2{k}^{2}-2}{1+2{k}^{2}}$=0,
化简可得k2=2,解得k=±$\sqrt{2}$;
(ii)|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{16{k}^{4}}{(1+2{k}^{2})^{2}}-\frac{8({k}^{2}-1)}{1+2{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{2\sqrt{2}\sqrt{1+{k}^{2}}}{1+2{k}^{2}}$,
P(-1,2)到直线l:y=k(x+1)的距离为d=$\frac{|-k+k-2|}{\sqrt{1+{k}^{2}}}$=$\frac{2}{\sqrt{1+{k}^{2}}}$,
可得△MNP的面积S=$\frac{1}{2}$|MN|•d=$\frac{1}{2}$$\sqrt{1+{k}^{2}}$•$\frac{2\sqrt{2}\sqrt{1+{k}^{2}}}{1+2{k}^{2}}$•$\frac{2}{\sqrt{1+{k}^{2}}}$
=2$\sqrt{2}$•$\frac{\sqrt{1+{k}^{2}}}{1+2{k}^{2}}$,
设t=$\sqrt{1+{k}^{2}}$(t≥1),则k2=t2-1,
即有S=2$\sqrt{2}$•$\frac{t}{2{t}^{2}-1}$=$\frac{2\sqrt{2}}{2t-\frac{1}{t}}$,
由2t-$\frac{1}{t}$在[1,+∞)递增,可得t=1时,2t-$\frac{1}{t}$取得最小值1,
则当k=0时,△MNP面积取得最大值2$\sqrt{2}$.

点评 本题考查椭圆的方程的求法,注意运用椭圆的离心率公式和基本量的关系,考查直线和椭圆方程联立,运用韦达定理和弦长公式,点到直线的距离公式,同时考查直径所对的圆周角为直角,以及向量数量积的坐标表示,化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设抛物线y2=4x的焦点为F,过点M(2,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,$|{BF}|=\frac{3}{2}$,则△BCF与△ACF的面积的比值为(  )
A.1:4B.1:5C.1:6D.1:7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a>0且a≠1,若函数f(x)=loga(ax2-2x+3)在[$\frac{1}{2}$,2]上是增函数,则a的取值范围是($\frac{1}{4}$,$\frac{1}{2}$]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.图甲是应用分形几何学做出的一个分形规律图,按照图甲所示的分形规律可得图乙所示的一个树形图.

我们采用“坐标”来表示图乙各行中的白圈、黑圈的个数(横坐标表示白圈的个数,纵坐标表示黑圈的个数).比如第一行记为(0,1),第二行记为(1,2),第三行记为(4,5),照此下去,第四行中白圈与黑圈的“坐标”为(13,14),第n(n∈N*)行中白圈与黑圈的“坐标”为($\frac{{3}^{n-1}-1}{2}$,$\frac{{3}^{n-1}+1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{lnx}{x}$的单调递减区间是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点F为抛物线E:y2=4x的焦点,点A(2,m)在抛物线E上,则|AF|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过抛物线C:y2=2px(p>0)的焦点F且倾斜角为45°的直线交C于A,B两点,若以AB为直径的圆被x轴截得的弦长为16$\sqrt{3}$,则p的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax+1-2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M到准线l的距离为d,则d+|MA|的最小值为(  )
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=4x的焦点为F,准线为l,在抛物线C上取一点A,过A分别向x轴和准线作垂线,垂足分别为M,N,连接AF并延长交抛物线于另一点B,若$\sqrt{5}$AM=2AN,则线段AB的长为(  )
A.20B.40C.5D.4

查看答案和解析>>

同步练习册答案