精英家教网 > 高中数学 > 题目详情
4.已知a>0且a≠1,若函数f(x)=loga(ax2-2x+3)在[$\frac{1}{2}$,2]上是增函数,则a的取值范围是($\frac{1}{4}$,$\frac{1}{2}$]∪[2,+∞).

分析 对a是否大于1进行分情况讨论,利用复合函数的单调性得出二次函数在[$\frac{1}{2}$,2]的单调性,列出不等式组解出a的范围.

解答 解:设g(x)=ax2-2x+3,则g(x)的图象开口向上,对称轴为x=$\frac{1}{a}$.
(1)若0<a<1,则g(x)在[$\frac{1}{2}$,2]上是减函数,且gmin(x)>0,
∴$\left\{\begin{array}{l}{\frac{1}{a}≥2}\\{4a-1>0}\end{array}\right.$,解得$\frac{1}{4}<a≤\frac{1}{2}$;
(2)若a>1,则g(x)在[$\frac{1}{2}$,2]上是增函数,且gmin(x)>0,
∴$\left\{\begin{array}{l}{\frac{1}{a}≤\frac{1}{2}}\\{\frac{a}{4}+2>0}\end{array}\right.$,解得a≥2.
综上,a的取值范围是($\frac{1}{4}$,$\frac{1}{2}$]∪[2,+∞).

点评 本题考查了复合函数的单调性,对数函数,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.过抛物线y2=4x的焦点F作倾斜角为45°的弦AB,则AB的弦长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x>y>z>0,求证:$\frac{y}{x-y}$>$\frac{z}{x-z}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b∈R+,求证:(a+$\frac{1}{a}$)(b+$\frac{1}{b}$)≥4,并说明等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若抛物线C:y2=-2x上只有两点到直线l:kx-y-k=0的距离为1,则实数k的取值范围是$k<-\frac{{\sqrt{2}}}{4}$或k>$\frac{\sqrt{2}}{4}$
或k=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一平面截一球得到面积为5π的圆面,球心到这个平面的距离为2,则该球的表面积是36π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知过抛物线C:y2=2px(p>0)的焦点,斜率为2$\sqrt{2}$的直线交抛物线于A(x1,y1)和B(x2,y2)(x1<x2)两点,且|AB|=$\frac{9}{2}$.(1)求抛物线C的方程;
(2)若抛物线C的准线为l,焦点为F,点P为直线m:x+y-2=0上的动点,且点P的横坐标为a,试讨论当a取不同的值时,圆心在抛物线C上,与直线l相切,且过点P的圆的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为(1,0),离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的左焦点且斜率为k的直线l与椭圆C交于M、N两点.
(i)若以MN为直径的圆过坐标原点O,求k的值;
(ii)若P(-1,2),求△MNP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线2x2-y2=1的左顶点为P,其渐近线与抛物线y2=-2px(p>0)的准线交于A,B两点,若△APB为等腰直角三角形,则p=(  )
A.1+$\sqrt{2}$B.2+$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案