精英家教网 > 高中数学 > 题目详情
14.已知双曲线2x2-y2=1的左顶点为P,其渐近线与抛物线y2=-2px(p>0)的准线交于A,B两点,若△APB为等腰直角三角形,则p=(  )
A.1+$\sqrt{2}$B.2+$\sqrt{2}$C.2D.$\sqrt{2}$

分析 求出双曲线2x2-y2=1的左顶点为P(-$\frac{\sqrt{2}}{2}$,0),渐近线方程为y=±$\sqrt{2}$x,抛物线y2=-2px(p>0)的准线x=$\frac{p}{2}$,
利用△APB为等腰直角三角形,建立方程,即可求出p.

解答 解:双曲线2x2-y2=1的左顶点为P(-$\frac{\sqrt{2}}{2}$,0),渐近线方程为y=±$\sqrt{2}$x,抛物线y2=-2px(p>0)的准线x=$\frac{p}{2}$,代入y=±$\sqrt{2}$x,可得y=±$\frac{\sqrt{2}}{2}$p,
∵△APB为等腰直角三角形,
∴$\frac{\sqrt{2}}{2}$p=$\frac{p}{2}$+$\frac{\sqrt{2}}{2}$,
∴p=2+$\sqrt{2}$.
故选:B.

点评 本题考查双曲线、抛物线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知a>0且a≠1,若函数f(x)=loga(ax2-2x+3)在[$\frac{1}{2}$,2]上是增函数,则a的取值范围是($\frac{1}{4}$,$\frac{1}{2}$]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过抛物线C:y2=2px(p>0)的焦点F且倾斜角为45°的直线交C于A,B两点,若以AB为直径的圆被x轴截得的弦长为16$\sqrt{3}$,则p的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax+1-2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M到准线l的距离为d,则d+|MA|的最小值为(  )
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.盒子有质地均匀的8个小球,其中3个红球,3个黑球和2个白球.
(1)从盒中一次随机取出2个小球,求取出的2个球颜色不同的概率;
(2)从盒中一次随机取出3个小球,其中取出黑球和白球的个数分别为m和n,记ξ=|m-n|,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=sin(ωx+φ-$\frac{π}{4}$)(ω>0,0<φ<$\frac{π}{2}$)为奇函数,且y=f(x)的图象与x轴的两个相邻交点之间的距离为π,设矩形区域Ω是由直线x=±$\frac{π}{2}$和y=±1所围成的平面图形,区域D是由函数y=f(x+$\frac{π}{2}$)、x=±$\frac{π}{2}$及y=-1所围成的平面图形,向区域Ω内随机地抛掷一粒豆子,则该豆子落在区域D的概率是$\frac{π+2}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于(  )
A.90B.-96C.98D.-100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=4x的焦点为F,准线为l,在抛物线C上取一点A,过A分别向x轴和准线作垂线,垂足分别为M,N,连接AF并延长交抛物线于另一点B,若$\sqrt{5}$AM=2AN,则线段AB的长为(  )
A.20B.40C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义域为R的偶函数,当x≤0时,f(x)=x2+2x,那么,不等式f(x)<3的解集是(-3,3).

查看答案和解析>>

同步练习册答案