精英家教网 > 高中数学 > 题目详情
12.函数f(x)=-ax2+9(a>0)在[0,3]上的最大值为(  )
A.9B.9(1-a)C.9-aD.9-a2

分析 判断二次函数的对称轴与开口方向,然后求解最值即可.

解答 解:函数f(x)=-ax2+9(a>0),开口向下,对称轴为:x=0,可知函数的最大值为:f(0)=9.
故选:A.

点评 本题考查二次函数的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,|$\overrightarrow{AB}$|=8,|$\overrightarrow{AD}$|=6,N为DC的中点,$\overrightarrow{BM}$=2$\overrightarrow{MC}$,则$\overrightarrow{AM}$•$\overrightarrow{NM}$=(  )
A.48B.36C.24D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$\frac{lnx}{2x}$的最大值为(  )
A.$\frac{1}{2}$e-1B.eC.e2D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品至少有一件是次品”,则下列结论正确的是(  )
A.A与B互斥B.任何两个均互斥C.B与C互斥D.任何两个均对立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.时钟的分针在1点到1点45分这段时间里转过的弧度数是-$\frac{3}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合M={1,2,3},N={2,3,4},则M∪N={1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知焦点为F的抛物线C:y2=2px(p>0))上有一点M(m,2$\sqrt{2}$),以M为圆心、|MF|为半径的圆被y轴截得的弦长为2$\sqrt{5}$.
(1)求|MF|;
(2)若倾斜角为$\frac{π}{4}$且经过点(2,0)的直线l与抛物线C相交于A、B两点,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数f(x)=$\sqrt{3}$sinx-cosx的图象向右平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{8}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点,∠ADP=45°.
(1)求证:AF∥平面PCE.
(2)求证:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

同步练习册答案