精英家教网 > 高中数学 > 题目详情
在一次数学测验后,学习委员小明对选做题的选题情况进行了统计,如表:(单位:人)
几何证明选讲 坐标系与参数方程 不等式选讲 合计
男同学 12 4 6 22
女同学 0 8 12 20
合计 12 12 18 42
(Ⅰ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知学习委员小明和两名数学科代表三人都在选做《不等式选讲》的同学中.求在这名班级学习委员被选中的条件下,两名数学科代表也被选中的概率;
(Ⅱ)在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,我们可以得到如下2×2列联表:(单位:人)
几何类 代数类 总计
男同学 16 6 22
女同学 8 12 20
总计 24 18 42
据此判断是否有95%的把握认为选做“几何类”或“代数类”与性别有关?
下面临界值表仅供参考:
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考点:独立性检验
专题:概率与统计
分析:(Ⅰ)令事件A为“这名学委被抽取到”;事件B为“两名数学科代表被抽到”,利用条件概率求得两名数学科代表也被选中的概率,或利用古典概型概率公式求解;
(Ⅱ)根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到所求的值所处的位置,得到百分数.
解答: 解:(Ⅰ)由题可知在选做“不等式选讲”的18位同学中,要选取3位同学.
令事件A为“这名班级学习委员被抽到”;事件B为“两名数学科代表被抽到”,
则P(A∩B)=
C
3
3
C
3
18
,P(A)=
C
2
17
C
3
18
(4分)
所以P(B|A)=
P(A∩B)
P(A)
=
C
3
3
C
2
17
=
2
17×16
=
1
136
.…..(6分)
(Ⅱ)由表中数据得K2的观测值k=
42×(×16×12-8×6)2
24×18×20×2
=
252
55
≈4.582>3.841.
所以,据此统计有95%的把握认为选做“几何类”或“代数类”与性别有关
点评:本题考查条件概率、独立性检验的应用,考查根据列联表做出观测值,根据所给的临界值表进行比较,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:f(x)-cos(
6n+1
3
π+2x)+cos(
6n-1
3
π-2x)+2
3
sin(
π
3
+2x)(x∈R,n∈Z),
(1)求函数f(x)的值域和最小正周期;
(2)写出f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC中,平面ASC⊥平面ABC,O、D分别为AC、AB的中点,AS=CS=CD=AD=
2
2
AC
(1)求证:平面ASC⊥平面BCS
(2)设AC=2,求三棱锥S-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x-xlnx(a>0),g(x)=1-
1+alnx
x
(a>0)
(Ⅰ)若函数满足f(1)=2,求g(x)的最小值;
(Ⅱ)若函数f(x)在定义域上是单调函数,求实数a的取值范围;
(Ⅲ)当
1
e
<m<n<1时,试比较
m
n
1+lnm
1+lnn
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二阶矩阵M有特征值λ=8及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(-2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值,及对应的一个特征向量
e2
的坐标之间的关系;
(3)求直线l:2x-4y+1=0在矩阵M的作用下的直线l′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
1-2sin10°cos10°
cos10°-
1-cos2170°

(2)f(α)=
sin(5π-α)cos(α+
2
)cos(π+α)
sin(α-
2
)cos(α+
π
2
)tan(α-3π)
,求f(-
41π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂计划生产甲、乙两种产品,甲产品售价50千元/件,乙产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,该厂能获得A种原料120吨,B种原料50吨.问生产甲、乙两种产品各多少件时,能使销售总收入最大?最大总收入为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.

查看答案和解析>>

同步练习册答案