精英家教网 > 高中数学 > 题目详情
若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是
 
考点:直线与圆的位置关系
专题:直线与圆
分析:由题意可得,圆心到直线的距离小于或等于半径,即
|a-0+1|
2
2
,解绝对值不等式求得实数a取值范围.
解答: 解:由题意可得,圆心到直线的距离小于或等于半径,
|a-0+1|
2
2
,化简得|a+1|≤2,故有-2≤a+1≤2,求得-3≤a≤1,
故答案为:[-3,1].
点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,四条侧棱长均相等且BD交AC于点O.
(1)求证:AB∥平面PCD;
(2)求证:PO⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C的对边分别是a,b,c,且
3
c=2asinC.
(1)确定角A的大小;
(2)若a=
7
,且b+c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了参加全运会,省运动管理中心对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
27 38 30 37 35 31
33 29 38 34 28 36
请用平均数和方差来分析甲、乙两人谁参加这项重大比赛更合适.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=
4
anan+1
,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次数学测验后,学习委员小明对选做题的选题情况进行了统计,如表:(单位:人)
几何证明选讲 坐标系与参数方程 不等式选讲 合计
男同学 12 4 6 22
女同学 0 8 12 20
合计 12 12 18 42
(Ⅰ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知学习委员小明和两名数学科代表三人都在选做《不等式选讲》的同学中.求在这名班级学习委员被选中的条件下,两名数学科代表也被选中的概率;
(Ⅱ)在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,我们可以得到如下2×2列联表:(单位:人)
几何类 代数类 总计
男同学 16 6 22
女同学 8 12 20
总计 24 18 42
据此判断是否有95%的把握认为选做“几何类”或“代数类”与性别有关?
下面临界值表仅供参考:
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+(b-
a-3
2
)x2+3x,其中a>0,b∈R.
(Ⅰ)当b=-3时,求函数f(x)的单调区间;
(Ⅱ)当a=3,且b<0时,
(i)若f(x)有两个极值点x1,x2(x1<x2),求证:f(x1)<1;
(ii)若对任意的x∈[0,t],都有-1≤f(x)≤16成立,求正实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线2x+y=0上,且圆C与直线x+y=1切于点M(2,-1),求圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=
2x+1 ,x<0
x3  ,0≤x≤1
x
 ,x>1
,编写程序求函数值(只写程序)
(2)画出程序框图:求和:
2
1
+
3
2
+
4
3
+
5
4
+…+
100
99
(只画程序框图,循环体不对不得分)

查看答案和解析>>

同步练习册答案