精英家教网 > 高中数学 > 题目详情
16.已知tanα=-2,则$\frac{1}{4}$sin2α+$\frac{2}{5}$cos2α的值为(  )
A.$\frac{17}{25}$B.$\frac{25}{7}$C.$\frac{7}{25}$D.$\frac{25}{17}$

分析 原式分母看做“1”,利用同角三角函数间基本关系化简,再弦化切后将tanα的值代入计算即可求出值.

解答 解:∵tanα=-2,
∴原式=$\frac{\frac{1}{4}si{n}^{2}α+\frac{2}{5}co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{\frac{1}{4}ta{n}^{2}α+\frac{2}{5}}{ta{n}^{2}α+1}$=$\frac{\frac{1}{4}×4+\frac{2}{5}}{4+1}$=$\frac{7}{25}$.
故选:C.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若复数z满足($\overline{z}$+2i-3)(4+3i)=3-4i,则|z|=(  )
A.$\sqrt{10}$B.$\sqrt{13}$C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={x|-2<x<2},集合B为自然数集,则A∩B={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知一元二次不等式f(x)>0的解集为(-∞,1)∪(2,+∞),则f(lgx)<0的解集为(10,100).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义运算$|{\begin{array}{l}{a}&b\\{c}&d\end{array}}|$=ad-bc,若z=$|{\begin{array}{l}{1}&2\\{i}&{i^2}\end{array}}|$,则复数$\overline z$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.{an}为等差数列,前n项和为Sn,若S11=66,则4a3+3a6+2a12=(  )
A.27B.54C.99D.108

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx+ax2+bx.(a,b∈R).
(1)曲线y=f(x)上一点A(1,2),若在点A处的切线与直线2x-y-10=0平行,求a,b的值;
(2)设函数y=f(x)的导函数为y=f′(x),若f′(2)=$\frac{1}{2}$,且函数y=f(x)在(0,+∞)是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过C:y2=8x抛物线上一点P(2,4)作倾斜角互补的两条直线,分别与抛物线相交于A、B两点,则直线AB的斜率是(  )
A.-$\frac{1}{2}$B.-1C.-$\frac{2}{3}$D.-2

查看答案和解析>>

同步练习册答案