精英家教网 > 高中数学 > 题目详情
12.函数f(x)=$\sqrt{3}$sin2x-2cos2x(x∈R)的最小正周期是(  )
A.πB.2 πC.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 利用三角恒等变换化简f(x)的解析式,再根据正弦函数的周期性得出结论.

解答 解:函数f(x)=$\sqrt{3}$sin2x-2cos2x=$\sqrt{3}$sin2x-2•$\frac{1+cos2x}{2}$=2sin(2x-$\frac{π}{6}$)-1(x∈R)的最小正周期是$\frac{2π}{2}$=π,
故选:A.

点评 本题主要考查三角恒等变换,正弦函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数y=log2sinx,当x∈[$\frac{π}{6}$,$\frac{3π}{4}$)时的值域为[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知cosα=$\frac{\sqrt{2}}{3}$,α∈($\frac{3π}{2}$,2π),则sin($α+\frac{5π}{6}$)的值为(  )
A.$\frac{\sqrt{21}+\sqrt{2}}{6}$B.$\frac{\sqrt{21}-\sqrt{2}}{6}$C.$\frac{-\sqrt{21}+\sqrt{2}}{6}$D.$\frac{-\sqrt{21}-\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m,n,l是三条不同直线,α,β,γ是三个不同平面,则下列说法正确的是(  )
A.若l∥n,n∥β,则l∥βB.若α⊥β,n∥α,m∥β,则m⊥n
C.若α⊥β,β⊥γ,则α∥γD.若l⊥α,l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,满足|${\overrightarrow a}$|=|${\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|=|${\overrightarrow a$+$\overrightarrow b$-$\overrightarrow c}$|=1,则|${\overrightarrow c}$|的最大值为M=$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定积分$\int_{-1}^1$exdx的值为$e-\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆(x-1)2+y2=R2(R>0)与椭圆$\frac{{x}^{2}}{4}$+y2=1有公共点,求圆的半径R的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平角坐标系xOy中,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{1}{2}$,且过点$(0,\sqrt{3})$,椭圆C的长轴的两端点为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA、PB分别交于M,N两点.
(1)求椭圆C的方程;
(2)在x轴上是否存在定点经过以MN为直径的圆,若存在,求定点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆E1的长半轴长为a1、短半轴长为b1,椭圆E2的长半轴长为a2、短半轴长为b2,若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$,则我们称椭圆E1与椭圆E2是相似椭圆.已知椭圆E:$\frac{x^2}{2}$+y2=1,其左顶点为A、右顶点为B.
(1)设椭圆E与椭圆F:$\frac{x^2}{s}$+$\frac{y^2}{2}$=1是“相似椭圆”,求常数s的值;
(2)设椭圆G:$\frac{x^2}{2}$+y2=λ(0<λ<1),过A作斜率为k1的直线l1与椭圆G只有一个公共点,过椭圆E的上顶点为D作斜率为k2的直线l2与椭圆G只有一个公共点,求|k1k2|的值;
(3)已知椭圆E与椭圆H:$\frac{x^2}{2}$+$\frac{y^2}{t}$=1(t>2)是相似椭圆.椭圆H上异于A、B的任意一点C(x0,y1),且椭圆E上的点M(x0,y2)(y1y2>0)求证:AM⊥BC.

查看答案和解析>>

同步练习册答案