精英家教网 > 高中数学 > 题目详情

【题目】椭圆 + =1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1 , F2 . 若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为

【答案】
【解析】解:因为椭圆 + =1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1 , F2
若|AF1|,|F1F2|,|F1B|成等比数列,|AF1|=a﹣c,|F1F2|=2c,|F1B|=a+c,
所以(a﹣c)(a+c)=4c2 , 即a2=5c2
所以e=
所以答案是:
【考点精析】解答此题的关键在于理解等比数列的基本性质的相关知识,掌握{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合集合,集合,且集合D满足.

(1)求实数a的值.

(2)对集合,其中,定义由中的元素构成两个相应的集合:,,其中是有序实数对,集合ST中的元素个数分别为,若对任意的,总有,则称集合具有性质P.

①请检验集合是否具有性质P并对其中具有性质P的集合,写出相应的集合ST.

②试判断mn的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数(常数为自然对数的底数).

(Ⅰ)求函数的单调区间;

(Ⅱ)若恒成立,求实数的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(Ⅰ)写出曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2﹣2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为
(2)(不等式选做题)在实数范围内,不等式|2x﹣1|+|2x+1|≤6的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,点A1在底面ABC的投影是线段BC的中点O.

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知
(1)求证:tanB=3tanA;
(2)若cosC= ,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面分别为的中点,为侧棱上的动点

(Ⅰ)求证:平面平面

(Ⅱ)若为线段的中点,求证:平面

(Ⅲ)试判断直线与平面是否能够垂直。若能垂直,求的值;若不能垂直,请说明理由

查看答案和解析>>

同步练习册答案