精英家教网 > 高中数学 > 题目详情

已知函数
(1)求的最小值;
(2)若对所有都有,求实数的取值范围.

(1)当时,取得最小值.  
(2)

解析试题分析:解:的定义域为,     1分  
的导数.          3分
,解得;令,解得.
从而单调递减,在单调递增.        5分
所以,当时,取得最小值.                  6分
(Ⅱ)解法一:令,则,       8分
①若,当时,
上为增函数,
所以,时,,即.         10分
②若,方程的根为
此时,若,则,故在该区间为减函数.
所以时,
,与题设相矛盾.          
综上,满足条件的的取值范围是.        12分
解法二:依题意,得上恒成立,
即不等式对于恒成立 .            8分
,  则.           10分
时,因为,  
上的增函数,  所以 的最小值是
所以的取值范围是.                   12分
考点:导数的运用
点评:主要是考查了导数在研究函数中的运用,根据导数的符号判定函数单调性,以及函数的最值,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)当时,讨论函数的单调性:
(Ⅱ)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.
试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调递减区间;
(2)求切于点的切线方程;
(3)求函数上的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若处有极值,求;(2)若上为增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象经过点,且在处的切线方程是.
(I)求的解析式;
(Ⅱ)求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.
(1)求函数的解析式.
(2)若方程f(x)=k有3个不同的根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数处的切线方程为,求实数的值;
(2)若在其定义域内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数, 其中,的导函数.
(Ⅰ)若,求函数的解析式;
(Ⅱ)若,函数的两个极值点为满足. 设, 试求实数的取值范围.

查看答案和解析>>

同步练习册答案