精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的单调递减区间;
(2)求切于点的切线方程;
(3)求函数上的最大值与最小值。

(1)(2)(3)

解析试题分析:(1)∵,∴,令,递减区间为:
(2)∵,∴切线方程为:
(3)当变化时,的变化情况如下:          

 













极大值

极小值

,而
考点:本题考查了导数的运用
点评:求函数最值的步骤:在闭区间[a,b]上连续,在(a,b)内可导,f(x)在[a,b]上求最大值与最小值的步骤:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,直线与函数的图象都相切,且与函数的图象的切点的横坐标为.
(Ⅰ)求直线的方程及的值;
(Ⅱ)若(其中的导函数),求函数的最大值;
(Ⅲ)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设曲线在点处的切线斜率为,且,对一切实数,不等式恒成立
(1) 求的值;
(2) 求函数的表达式;
(3) 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若p=2,求曲线处的切线方程;
(2)若函数在其定义域内是增函数,求正实数p的取值范围;
(3)设函数,若在[1,e]上至少存在一点,使得成立,求实
数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是二次函数,不等式的解集是,且在点处的切线与直线平行.求的解析式;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若的极值点,求实数的值;
(II)若上为增函数,求实数的取值范围;
(Ⅲ)当时,方程有实根,求实数的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小值;
(2)若对所有都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像在点处的切线方程为.
(Ⅰ)求实数的值;
(Ⅱ)设是[)上的增函数, 求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)当时,求最大的正整数,使得对是自然对数的底数)内的任意个实数都有成立;
(3)求证:

查看答案和解析>>

同步练习册答案