精英家教网 > 高中数学 > 题目详情
13.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲不能连续三天参加活动的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 甲不能连续三天参加活动的对立事件是甲连续三天参加活动,由此能求出甲不能连续三天参加活动的概率.

解答 解:甲不能连续三天参加活动的对立事件是甲连续三天参加活动,
∴甲不能连续三天参加活动的概率:
p=1-$\frac{{C}_{4}^{1}{A}_{3}^{3}}{{C}_{6}^{3}{A}_{3}^{3}}$=$\frac{4}{5}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的每一项均为正数,a1=1,a2n+1=an2+1(n=1,2…),试归纳成数列{an}的一个通项公式为an=$\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2+ax-2xlnx(a∈R).
(1)当a=5时,判断g(x)=f(x)-$\frac{1}{2}$x2在[1,e]上的单调性并加以证明;
(2)当a=4-e时,试探讨函数f(x)在(0,+∞)上是否存在极小值?,若存在,求出极小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,平面四边形ABCD中,∠B=∠D=90°,AC=2AB=4$\sqrt{3}$,DA=DC,F是AC上一点,且AF=$\frac{1}{3}$AC.将该四边形沿AC折起,使点D在平面ABC的射影E恰在BC上,此时DE=2$\sqrt{2}$.
(Ⅰ)证明:AB⊥平面BCD;
(Ⅱ)证明:AB∥平面DEF;
(Ⅲ)求三棱锥A-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用反余弦函数值的形式表示各式中的x:
(1)cosx=$\frac{3}{4}$,x∈[0,π];
(2)cosx=-$\frac{\sqrt{5}}{5}$,x∈[0,π];
(3)cosx=-$\frac{\sqrt{5}}{5}$,x∈[-π,0];
(4)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,0];
(5)cosx=$\frac{3}{4}$,x∈[$\frac{3π}{2}$,2π];
(6)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(7)cosx=-$\frac{\sqrt{5}}{5}$,x∈[$\frac{1}{2}$π,$\frac{3}{2}$π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.证明:cosθ-cosφ=-2sin$\frac{θ+φ}{2}$sin$\frac{θ-φ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若将函数f(x)=(x-1)7表示为f(x)=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7,其中(ai∈R,i=0,1,2,…,7)为实数,则a4等于-280.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正四棱锥O-ABCD的体积为2,底面边长为$\sqrt{3}$,则该正四棱锥的外接球的半径为$\frac{11}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图是一个算法的流程图,则最后输出的S=9.

查看答案和解析>>

同步练习册答案