精英家教网 > 高中数学 > 题目详情
若变量x,y满足约束条件
y≥|x+1|
x+3y-3≤0
,则z=2x+y的最大值为(  )
A、1B、-1C、-2D、-4
考点:简单线性规划
专题:不等式的解法及应用
分析:作出约束条件所对应的可行域,变形目标函数可得y=-2x+z,平移直线y=-2x可得当直线经过点A(0,1)时,z取最大值,代值计算即可.
解答: 解:作出约束条件
y≥|x+1|
x+3y-3≤0
所对应的可行域(如图阴影),
变形目标函数可得y=-2x+z,平移直线y=-2x可得
当直线经过点A(0,1)时,z取最大值1
故选:A
点评:本题考查简单线性规划,准确作图是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:实数x满足(x-a)(x-3a)<0,其中a>0,命题q:实数x满足
x-3
x-2
≤0.
(1)若a=1且p∨q为假,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,则复数
1+2i
2-i
(  )
A、1B、iC、-1D、-i

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且Sn=n2-
1
4
,n∈N*
(Ⅰ)证明:{a2n}是等差数列;
(Ⅱ)求数列{
1
Sn
}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是正方体ABCD-A′B′C′D′中,异面直线A′D与CD′所成的角是(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的中点为P,AB的垂直平分线与x轴交于E(x0,0).
(1)求k的取值范围;
(2)求证:x0<-3;
(3)△PEF能否成为以EF为底的等腰三角形?若能,求此k的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:在区间[1,+∞)上至少有一个x0,使得x03-x0-1>0,则¬p为(  )
A、?x∈[1,+∞),x3-x-1≤0
B、?x∈(-∞,1],x3-x-1≤0
C、?x0∈[1,+∞),x03-x0-1≤0
D、?x0∈(-∞,1],x03-x0-1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn=
1
a
+
2
a2
+
3
a3
+…+
n
an
,则当a=2时,S6=(  )
A、
9
4
B、
17
8
C、2
D、
15
8

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算:a*b=
b(当a≤b时)
a(当a>b时)
,对于函数f(x)和g(x),函数|f(x)-g(x)|在闭区间[a,b]上的最大值称为f(x)与g(x)在闭区间[a,b]上的“绝对差”,记为
a≤x≤b
(f(x),g(x)),则
0≤x≤
π
2
(sinx*cosx,1)=
 

查看答案和解析>>

同步练习册答案