精英家教网 > 高中数学 > 题目详情
4.cos76°cos16°+cos14°cos74°-2cos75°cos15°的值等于(  )
A.0B.$\frac{\sqrt{3}}{2}$C.1D.-$\frac{1}{2}$

分析 利用诱导公式,两角差的余弦函数公式,二倍角的正弦函数公式化简所求,利用特殊角的三角函数值即可计算得解.

解答 解:cos76°cos16°+cos14°cos74°-2cos75°cos15°
=cos76°cos16°+sin76°sin16°-2sin15°cos15°
=cos(76°-16°)-sin30°
=cos60°-sin30°
=$\frac{1}{2}-\frac{1}{2}$
=0.
故选:A.

点评 本题主要考查了诱导公式,两角差的余弦函数公式,二倍角的正弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.$\sqrt{1-sin2}$+$\sqrt{1+sin2}$=2sin1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f(x)=ax2+(b+1)x+1(a≠0)是偶函数,g(x)=x3+(a-1)x2-2x是奇函数,则a+b=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解关于x的不等式(x-a)(x+a-1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值是$\frac{7}{4}$,最小值是$\frac{3}{4}$.
(1)求ω、a、b的值;  
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={y|y=-x2+5},B={x|y=$\sqrt{x-3}$},A∩B=(  )
A.[1,+∞)B.[1,3]C.(3,5]D.[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,程序框图输出的结果是(  )
A.12B.132C.1320D.11880

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=asinxcosx-sin2x+$\frac{1}{2}$的一条对称轴方程为x=$\frac{π}{6}$,则函数f(x)的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式$\frac{ax+b}{x-2}$≤0的解集是[-1,2)..

查看答案和解析>>

同步练习册答案