精英家教网 > 高中数学 > 题目详情
10.如图,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,其左焦点到椭圆上点的最远距离为3,点P(2,1)为椭圆外一点,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分
(1)求椭圆C的标准方程
(2)求△ABP面积最大值时的直线l的方程.

分析 (1)由椭圆的几何性质可知e=$\frac{c}{a}$=$\frac{1}{2}$,a+c=3,b2=a2-c2,即可求得a和b的值,求得椭圆方程;
(2)由A和B在椭圆上,将A和B点坐标代入椭圆方程,利用点差法求得直线AB的斜率kAB,设直线AB的方程,y=$-\frac{3}{2}x+m$,代入椭圆方程,根据韦达定理求得xA+xB,xA•xB,由弦长公式,点到直线的距离公式及三角形面积公式求得△ABP的面积S△ABP,m=1-$\sqrt{7}$时,S△ABP取最大值,即可求得直线l的方程.

解答 解:(1)由题意可知:e=$\frac{c}{a}$=$\frac{1}{2}$,
左焦点(-c,0)到椭圆上点的最远距离为3,
即使a+c=3,可解得:a=2,c=1,
b2=a2-c2=3,
∴所求椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;-------------------(4分)
(2)易得直线OP的方程:y=$\frac{1}{2}$x,
设A(xA,yA),B(xB,yB),R(x0,y0
其中y0=$\frac{1}{2}$x0
∵A,B在椭圆上,
∴$\left\{\begin{array}{l}{\frac{{x}_{A}^{2}}{4}+\frac{{y}_{A}^{2}}{3}=1}\\{\frac{{x}_{B}^{2}}{4}+\frac{{y}_{b}^{2}}{3}=1}\end{array}\right.$,
∴kAB=$\frac{{y}_{A}-{y}_{B}}{{x}_{A}-{x}_{B}}$=-$\frac{3{x}_{A}+{x}_{B}}{4{y}_{A}+{y}_{B}}$=-$\frac{3}{2}$------------------(6分)
设直线AB的方程为l:y=$-\frac{3}{2}x+m$(m≠0),
代入椭圆:$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=-\frac{3}{2}x+m}\end{array}\right.$,整理得:3x2-3mx+m2-3=0,$由△>0可得-2\sqrt{3}<m<2\sqrt{3}且m≠0$
根据韦达定理可知:xA+xB=m,xA•xB=$\frac{{m}^{2}-3}{3}$,-----------------(8分)
∴|AB|=$\sqrt{1+{k_{AB}}^2}|{x{\;}_A-{x_B}}|=\sqrt{1+{k_{AB}}^2}\sqrt{{{(x{\;}_A+{x_B})}^2}-4x{\;}_A{x_B}}=\sqrt{1+{k_{AB}}^2}\sqrt{4-\frac{m^2}{3}}$,
∵点P(2,1)到直线l的距离为:d=丨$\frac{-3+m-1}{\sqrt{1+{k}_{AB}^{2}}}$丨=丨$\frac{m-4}{\sqrt{1+{k}_{AB}^{2}}}$丨,
∴S△ABP=$\frac{1}{2}$•d•|AB|=$\frac{1}{2}$•|m-4|•$\sqrt{4-\frac{{m}^{2}}{3}}$,------------------(10分)
当m=1-$\sqrt{7}$时,S△ABP取最大值,
此时直线l的方程y=-$\frac{3}{2}$+1-$\sqrt{7}$.------------------(12分)

点评 本题考查椭圆的标准方程及其简单性质,考查直线与椭圆的位置关系,点差法,弦长公式点到直线的距离公式及三角形面积公式的综合运用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设f(x)、g(x)、h(x)是定义域为R的三个函数.对于命题:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x) 均是以T为周期的函数;
 ②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数,
下列判断正确的是(  )
A.①和②均为真命题B.①和②均为假命题
C.①为真命题,②为假命题D.①为假命题,②为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点分别为F1,F2,点A为双曲线Γ的左顶点,点M(x1,y1)(x1>0,y1>0)为双曲线Γ渐近线上的一点,且$\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow 0,\overrightarrow{OM},\overrightarrow{ON}$均为焦距的一半,若$∠MAN=\frac{2π}{3}$,则双曲线Γ的渐近线为(  )
A.$y=±\frac{{2\sqrt{3}}}{3}x$B.$y=±\frac{{\sqrt{3}}}{2}x$C.$y=±\frac{{\sqrt{5}}}{2}x$D.$y=±\frac{{2\sqrt{5}}}{5}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设全集为R,A={x|x2-x≤0},$B=\{x|{(\frac{1}{2})^x}>1\}$,则A∩∁RB=(  )
A.B.{0}C.[0,1]D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{e^x}{x}$.
(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax-y=0,求x0的值;
(2)当x>0时,求证:f(x)>x;
(3)设函数F(x)=f(x)-bx,其中b为实常数,试讨论函数F(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=ln({x-2})-\frac{x^2}{2a}$(a为整数且a≠0).若f(x)在x0处取得极值,且${x_0}∉[{e+2,{e^2}+2}]$,而f(x)≥0在[e+2,e2+2]上恒成立,则a的取值范围是a>e4+2e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆O是△ABC的内切圆,与AC,BC分别切于D,E两点,如图所示,连接BD交圆O于点G,BC=BA=2$\sqrt{2}$,AC=4 
(I)求证:EG∥CO;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线的中心在坐标原点,如果左焦点F与右顶点A以及虚轴上顶点B构成直角三角形,则其离心率为$\frac{{\sqrt{5}+1}}{2}$,称此双曲线为“黄金双曲线”.类比“黄金双曲线”可推知“黄金椭圆”的离心率为$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大$\frac{21}{2}$,则该数列的项数是(  )
A.6B.8C.12D.16

查看答案和解析>>

同步练习册答案