分析 先求导函数,求得极值点,确定函数的单调性,要使f(x)≥0在[e+2,e2+2]上恒成立,得到关于a的不等式组,由此可求a的取值范围.
解答 解:求导数可得f′(x)=$\frac{1}{x-2}$-$\frac{x}{a}$,令f′(x)=0,可得x0=1±$\sqrt{a+1}$,
∴函数在(-∞,1-$\sqrt{a+1}$)上单调减,在(1-$\sqrt{a+1}$,1+$\sqrt{a+1}$)上单调增,在(1+$\sqrt{a+1}$,+∞)上单调减
∵f(x)在x0处取得极值,且x0∉[e+2,e2+2],
∴函数在区间[e+2,e2+2]上是单调函数
∴$\left\{\begin{array}{l}{1+\sqrt{a+1}{>e}^{2}+2}\\{f(e+2)≥0}\end{array}\right.$ 或 $\left\{\begin{array}{l}{e+2>1+\sqrt{a+1}}\\{f{(e}^{2}+2)≥0}\end{array}\right.$,
∴a>e4+2e2
∴a的取值范围是a>e4+2e2.
故答案为:a>e4+2e2.
点评 本题考查导数知识的运用,考查函数的极值,考查恒成立问题,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x2 | B. | $f(x)=\frac{1}{x}$ | C. | f(x)=ex | D. | ?(x)=x7-x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 患心脏病 | 患其它病 | 合 计 | |
| 高血压 | 20 | 10 | 30 |
| 不高血压 | 30 | 50 | 80 |
| 合 计 | 50 | 60 | 110 |
| A. | 0.5% | B. | 1% | C. | 99.5% | D. | 99% |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com