精英家教网 > 高中数学 > 题目详情
17.已知Anm=272,Cnm=136,则m+n=19.

分析 根据组合数和排列数的公式,进行求解即可.

解答 解:Anm=272,Cnm=136,
且272=17×16,$\frac{17×16}{2}$=136,
所以n=17,m=2,
所以m+n=19.
故答案为:19.

点评 本题主要考查了排列数和组合数公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知直线x=my+1过抛物线C:y2=2px(p>0)的焦点F且与抛物线相交于两点M(x1,y1),N(x2,y2),自M,N向准线L作垂线,垂足分别为M1,N1
(Ⅰ)求抛物线C的方程;
(Ⅱ)证明:无论m取何实数时,y1y2,x1x2都是定值;
(Ⅲ)记△FMM1,△FM1N1,△FNN1的面积分别为S1,S2,S3,试判断$S_2^2=4{S_1}{S_3}$是否成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是(  )
A.样本方差反映了所有样本数据与样本平均值的偏离程度
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好
D.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是残差平方和

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.地球赤道的半径为6370km,则赤道上1弧度角所对的圆弧长为6370km.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,∠A=90°,AB=2,AC=3,设P,Q满足$\overline{AP}$=λ$\overline{AB}$,$\overline{AQ}$=(1-λ)$\overline{AC}$,λ∈R,若$\overrightarrow{BQ}$•$\overrightarrow{CP}$=1,则λ=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-bx2+cx+d的图象过点P(0,2),且在点M(1,f(1))处的切线方程为x-y-2=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.边长为x的正方形的周长C(x)=4x,面积S(x)=x2,则S′(x)=2x,因此可以得到有关正方形的如下结论:正方形面积函数的导数等于正方形周长函数的一半.那么对于棱长为x的正方体,请你写出关于正方体类似于正方形的结论:正方体体积函数的导数等于正方体表面积函数的一半.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{3}$x3+bx2+|x-a|(a>0,b∈R),如果f(x)的图象在点x=2a处的切线斜率为4a2+1.
(1)求b的值;
(2)若f(x)在区间(-2,2)上有最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,等边三角形PF1F2与双曲线交于M,N两点,若M,N分别为线段PF1,PF2的中点,则该双曲线的离心率为$\sqrt{3}+1$.

查看答案和解析>>

同步练习册答案