精英家教网 > 高中数学 > 题目详情

已知函数.
(I)求函数的单调区间;
(II)若函数上是减函数,求实数的最小值;
(III)若,使成立,求实数的取值范围.

(I) (II) (III)

解析试题分析:由已知函数的定义域均为,且.
(Ⅰ)函数,
时,.所以函数的单调增区间是.       3分
(Ⅱ)因f(x)在上为减函数,故上恒成立.
所以当时,

故当,即时,,所以,故
所以的最小值为.
(Ⅲ)“若,使成立”等价于
“当时,有”,
有(Ⅱ),当时,有
问题等价于:“当时,有
时,由(Ⅱ),上为减函数.
,故.
时,由于上为增函数,
的值域为,即
的单调性和值域知,唯一,使,且满足:
时,为减函数;
时,为增函数;
所以,=
所以,,与矛盾,不合题意.
综上,.
考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,同时考查不等式的证明,解题的关键是正确求导数,确定函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数,设为自然对数的底数.
(1)当时,求的最大值;
(2)若在区间上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)求函数的零点;
(2)若方程上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义在区间上的偶函数,且满足
(1)求函数的周期;
(2)已知当时,.求使方程上有两个不相等实根的的取值集合M.
(3)记,表示使方程上有两个不相等实根的的取值集合,求集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的解集
(2)若关于的不等式的解集是,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函数f(x)在区间[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)证明:对于一切的实数x都有f(x)x;
(2)若函数存在两个零点,求a的取值范围
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数都在区间上有定义,对任意,都有成立,则称函数为区间上的“伙伴函数”
(1)若为区间上的“伙伴函数”,求的范围。
(2)判断是否为区间上的“伙伴函数”?
(3)若为区间上的“伙伴函数”,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
的定义域为.
(1)求.      
(2)记   ,若的必要不充分条件,求实数的取值范围。

查看答案和解析>>

同步练习册答案