精英家教网 > 高中数学 > 题目详情

已知函数,其中为常数,设为自然对数的底数.
(1)当时,求的最大值;
(2)若在区间上的最大值为,求的值.

(1)      (2)

解析试题分析:(1)函数f(x)的定义域为(0,+∞),当a=-1时,f(x)=lnx-x,f′(x)=-1=令f′(x)>0得,0<x<1,令f′(x)<0得,x>1或x<0,∴函数f(x)增区间为(0,1),减区间为(1,+∞);
(2)f′(x)=
①当a>0时,x>0,∴f′(x)>0,∴函数f(x)在(0.e]上是增函数,
∴f(x)max=f(e)=2,∴a+1=2,∴a=e符号题意;
②当a<0时,令f′(x)=0得x=-
1°若0<-≤e,即-≤a<0时
∴f(x)max=f(-a)=2
∴-1+ln(-a)=2,
∴a=-e2不符号题意,舍去;
2°若-a>e,即a<-e时,在(0,e]上f′(x)>0.∴f(x)在(0.e]上是增函数,故f(x)max=f()=2∴a=不符号题意,舍去;故a=
考点:导数的方法研究函数的单调性
点评:考查利用导数的方法研究函数的单调性、极值、最值和分类讨论的思想方法,注意函数的定义域;属难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求当时,函数的表达式;
(2)作出函数的图象,并指出其单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)确定的值,使为奇函数;
(2)当为奇函数时,求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论单调区间;
(2)当时,证明:当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知函数的图像过坐标原点,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为实数;
(1)当时,试讨论函数的零点的个数;
(2)已知不等式对任意都成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若曲线与曲线相交,且在交点处有相同的切线,求的值及该切线的方程;
(Ⅱ)设函数,当存在最小值时,求其最小值的解析式;
(Ⅲ)对(Ⅱ)中的,证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的递增区间是
① 求的值。
② 设,求在区间上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求函数的单调区间;
(II)若函数上是减函数,求实数的最小值;
(III)若,使成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案