精英家教网 > 高中数学 > 题目详情
15.设x,y,z,w∈R,且满足x2+y2+z2+w2=1,则P=xy+2yz+zw的最大值是$\frac{\sqrt{2}+1}{2}$.

分析 运用待定系数法,可设(x2+ky2)+[(1-k)y2+(1-l)z2]+(lz2+w2)=1,0<k,l<1.由重要不等式可得1≥2$\sqrt{k}$xy+2$\sqrt{(1-k)(1-l)}$yz+2$\sqrt{l}$yz,当2$\sqrt{k}$:2$\sqrt{(1-k)(1-l)}$:2$\sqrt{l}$=1:2:1,求得k,l,即可得到所求最大值.

解答 解:由x2+y2+z2+w2=1,
可设(x2+ky2)+[(1-k)y2+(1-l)z2]+(lz2+w2)=1,0<k,l<1.
由重要不等式可得1≥2$\sqrt{k}$xy+2$\sqrt{(1-k)(1-l)}$yz+2$\sqrt{l}$yz,
当2$\sqrt{k}$:2$\sqrt{(1-k)(1-l)}$:2$\sqrt{l}$=1:2:1时,P取得最大值.
即有k=l,且1-k=2$\sqrt{k}$,解得k=l=3-2$\sqrt{2}$,
则P=xy+2yz+zw≤$\frac{1}{2\sqrt{k}}$=$\frac{1}{2(\sqrt{2}-1)}$=$\frac{\sqrt{2}+1}{2}$.
当且仅当x=($\sqrt{2}$-1)y,y=z,w=($\sqrt{2}$-1)z取得最大值$\frac{\sqrt{2}+1}{2}$.
故答案为:$\frac{\sqrt{2}+1}{2}$.

点评 本题考查重要不等式的运用:求最值,注意运用待定系数法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|y=$\sqrt{x}$},B={x|-1≤2x-1≤3},则A∩B=(  )
A.[0,1]B.[1,2]C.[0,2]D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=2+$\frac{i}{1+i}$在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义域为R的奇函数f(x)的导函数f′(x),当x≠0时,f′(x)-$\frac{f(x)}{x}>0$,若a=$\frac{f(cos3)}{cos3}$,b=-$\frac{f(-2016)}{2016}$,c=(log3e)f(ln3),则下列关于a、b、c的大小关系正确的是(  )
A.b>c>aB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a∈R,函数f(x)=x3-ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|1-a|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知偶函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x<0时有2f(x)+xf′(x)>x2,C,则不等式(x+2014)2f(x+2014)-4f(-2)<0的解集为(  )
A.(-∞,-2012)B.(-2016,-2012)C.(-∞,-2016)D.(-2016,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若2<a<3,5<b<6,f(x)=logax+$\frac{3}{4}x-b$有整数零点x0,则x0=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题p:?a∈(0,1)∪(1,+∞),函数f(x)=loga(x-1)的图象过点(2,0),命题q:?x∈N,x3<x2.则(  )
A.p假q假B.p真q假C.p假q真D.p真q真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BF⊥BC,CE=2BF=2AB=4,∠ABF=DCE=120°,G是AF中点.
(1)求证:AF∥平面DCE;
(2)求证:BG⊥DF;
(3)若二面角E-DF-A的大小为150°,求线段DF的长.

查看答案和解析>>

同步练习册答案