精英家教网 > 高中数学 > 题目详情
15.已知数列{an}中,a1=-1,且n(an+1-an)=2-an+1(n∈N*),现给出下列4个结论:
①数列{an}是递增数列;
②数列{an}是递减数列;
③存在n∈N*,使得(2-a1)+(2-a2)+…+(2-an)>2016;
④存在n∈N*,使得(2-a12+(2-a22+…+(2-an2>2016;
其中正确的结论的序号是②③(请写出所有正确结论的序号)

分析 对于①②:由n(an+1-an)=2-an+1(n∈N*),变形为(n+1)an+1-nan=2,利用等差数列的通项公式可得:an=2-$\frac{3}{n}$,即可判断出正误.
对于③:(2-a1)+(2-a2)+…+(2-an)=3$(1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n})$,由于n→+∞时,1+$\frac{1}{2}+$…+$\frac{1}{n}$→+∞,即可判断出正误;
对于④:(2-an2=$\frac{9}{{n}^{2}}$<$\frac{9}{n(n-1)}$=9$(\frac{1}{n-1}-\frac{1}{n})$,(n≥2)时,利用“裂项求和”即可判断出正误.

解答 解:对于①②:∵n(an+1-an)=2-an+1(n∈N*),
∴(n+1)an+1-nan=2,
∴数列{nan}是等差数列,首项为-1,公差为2.
∴nan=-1+2(n-1)=2n-3,
解得an=2-$\frac{3}{n}$,
∴数列{an}是单调递增数列,
因此①不正确,②正确.
对于③:(2-a1)+(2-a2)+…+(2-an)=2n-$(2n-\frac{3}{1}-\frac{3}{2}-…-\frac{3}{n})$=3$(1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n})$,
由于n→+∞时,1+$\frac{1}{2}+$…+$\frac{1}{n}$→+∞,因此存在n∈N*,使得(2-a1)+(2-a2)+…+(2-an)>2016,正确.
对于④:(2-an2=$\frac{9}{{n}^{2}}$<$\frac{9}{n(n-1)}$=9$(\frac{1}{n-1}-\frac{1}{n})$,(n≥2)时,
∴n≥2时,(2-a12+(2-a22+…+(2-an2<9+9$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n-1}-\frac{1}{n})]$=9+9$(1-\frac{1}{n})$<18,
因此不存在n∈N*,使得(2-a12+(2-a22+…+(2-an2>2016.
综上可得:只有②③正确.
故答案为:②③.

点评 本题考查了等差数列的通项公式、“裂项求和”方法、不等式的性质、“放缩法”、数列的单调性、“调和级数”的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.若某程序框图如图所示,则该程序运行后输出的i值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某三棱锥的三视图如图所示,图中网格小正方形的边长为1,则该三棱锥的体积为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|$\vec a$|=2,|$\vec b$|=3,$\vec a$,$\vec b$的夹角为120°,则|$\vec a$+2$\vec b$|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别为a,b,c,且3bsinA=2$\sqrt{3}$asinC.
(1)若A+3C=π,求sinB的值;
(2)若c=3,△ABC的面积为3$\sqrt{2}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{2\sqrt{2}}}{3}$,B(0,1)为椭圆的一个顶点,直线l交椭圆于P,Q(异于点B)两点,BP⊥BQ.
(Ⅰ)求椭圆方程;
(Ⅱ)求△BPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图).
(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;
(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+ax-lnx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)-2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:$F'(\frac{{{x_1}+{x_2}}}{2})$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.B.C.2+πD.6+π

查看答案和解析>>

同步练习册答案