分析 (1)由三角形内角和为π,得B=2C,由正弦定理得到sinB.
(2)由三角形的面积公式以及余弦定理得到a的值.
解答 解:(1)在△ABC中,∵A+3C=π,∴B=2C,
∵3bsinA=2$\sqrt{3}$asinC.得:$\frac{2\sqrt{3}}{3}$=$\frac{2sinCcosC}{sinC}$,
∴cosC=$\frac{\sqrt{3}}{3}$,sinC=$\frac{\sqrt{6}}{3}$,
∴sinB=sin2C=$\frac{2\sqrt{2}}{3}$.
(2)∵3bsinA=2$\sqrt{3}$asinC.
∴$\frac{b}{c}$=$\frac{2\sqrt{3}}{3}$,
∵c=3,△ABC的面积S=$\frac{1}{2}$bcsinA=3$\sqrt{2}$,
∴sinA=$\frac{\sqrt{6}}{3}$,cosA=±$\frac{\sqrt{3}}{3}$,
∴a2=b2+c2-2bccosA,
∴a2=9或33,
∴a=3或$\sqrt{33}$.
点评 本题考查正弦定理和三角形的面积公式以及余弦定理.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com