如图1,直角梯形中,,,,点为线段上异于的点,且,沿将面折起,使平面平面,如图2.
(1)求证:平面;
(2)当三棱锥体积最大时,求平面与平面所成的锐二面角的余弦值.
(1)证明过程详见解析;(2).
解析试题分析:本题考查立体几何中的线面、面面关系,空间角,空间向量在立体几何中的应用等基础知识;考查运算求解能力、空间想象能力;考查数形结合思想、化归与转化等数学思想.第一问,法一,由,利用线面平行的判定得面,再利用面面平行的判定得面面,最后利用面面平行的性质得面;法二,建立空间直角坐标系,要证明线面平行,只需证AB与面DFC的法向量垂直即可;第二问,建立空间直角坐标系,利用三棱锥的体积公式计算体积,当体积最大值时,AE=1,再利用向量法求平面ABC和平面AEFD的法向量,利用夹角公式求二面角的余弦值.
试题解析:(1)证明:∵,面,面,
∴面, 2分
同理面, 3分
又,∴面面, 4分
又面,∴面. 5分
(2)法一:∵面面,又,面面,
∴面.
以所在直线为轴,所在直线为轴,所在直线为轴,建立
空间直角坐标系, 7分
设,则,
,
∴当时,三棱锥体积最大. 9分
∵, ∴, 10分
设平面的法向量, , ∴,
令,得平面
科目:高中数学 来源: 题型:解答题
如图,已知三角形△ABC与△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.
(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求BP的长;
(Ⅲ)求直线AP与平面ABC所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。
(1)求证:直线AB1∥平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
理)如图,正四面体的顶点,,分别在两两垂直的三条射线,,上,则在下列命题中,正确命题的个数为_______.
(1)是正三棱锥 ;
(2)直线∥平面;
(3)直线与所成的角是;
(4)二面角为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com