精英家教网 > 高中数学 > 题目详情

如图,四棱锥中,,底面为梯形,,且.(10分)

(1)求证:;
(2)求二面角的余弦值.

(1)证明见解析;(2)二面角的余弦值为

解析试题分析:(1)连结,交于点,连结,由所给条件可得,即,则;(2)以为原点,所在直线分别为轴、轴,如图建立空间直角坐标系.
,则可得坐标,设为平面的一个法向量,由
,可得,同理为平面的一个法向量,, 知二面角的余弦值.
试题解析:(1)连结,交于点,连结, ∵, ∴
又 ∵, ∴∴ 在△BPD中,
   ∴∥平面----------------4分

(2)方法一:以为原点,所在直线分别为轴、轴,如图建立空间直角坐标系.

,则
为平面的一个法向量,
,∴
解得,∴
为平面的一个法向量,则
,∴
解得,∴  
∴二面角的余弦值为.-------------------10分
方法二:在等腰Rt中,取中点,连结

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,直角梯形中,,点为线段上异于的点,且,沿将面折起,使平面平面,如图2.
(1)求证:平面
(2)当三棱锥体积最大时,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点. 
(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的高为,底面是边长为的正方形,顶点在底面上的射影是正方形的中心是棱的中点.试求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,三棱柱中,侧面为菱形,.

(Ⅰ)证明:;
(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面.
(1)证明:平面
(2)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱底面直角梯形,是棱上一点,.
(1)求直四棱柱的侧面积和体积;
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知直线 平行,且的距离为则直线的方程是      

查看答案和解析>>

同步练习册答案