精英家教网 > 高中数学 > 题目详情

如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知三角形△ABC与△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.
(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求BP的长;
(Ⅲ)求直线AP与平面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。

(1)求证:直线AB1∥平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,,底面为梯形,,且.(10分)

(1)求证:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.
(1)证明:AC1⊥A1B;
(2)设直线AA1与平面BCC1B1的距离为,求二面角A1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,分别是棱
的中点.求证:
(1)直线∥平面
(2)直线⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是平行四边形,,设中点,点在线段上且
(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正三棱柱中,,D、E分别是的中点,

(1)求证:面⊥面BCD;
(2)求直线与平面BCD所成的角.

查看答案和解析>>

同步练习册答案