精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

(1)见解析   (2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在正方体ABCD-A1B1C1D1中,M、N、P分别是AD1、BD和B1C的中点,

求证:(1)MN∥平面CC1D1D.    (2)平面MNP∥平面CC1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点. 
(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,三棱柱中,侧面为菱形,.

(Ⅰ)证明:;
(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面边长为8的正方形,四条侧棱长均为.点分别是棱上共面的四点,平面平面平面.
证明:
,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面.
(1)证明:平面
(2)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•湖北)如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为3,点E在侧棱AA1上,点F在侧棱BB1上,且AE=2,BF=

(I) 求证:CF⊥C1E;
(II) 求二面角E﹣CF﹣C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1
A1C1的中点.
(1)求证:CB1⊥平面ABC1
(2)求证:MN//平面ABC1.

查看答案和解析>>

同步练习册答案