分析 (1)由f'(x)=$\frac{1}{1+2x}$+m≥0恒成立.∴m≥-$\frac{1}{1+2x}$,而-$\frac{1}{1+2x}$<0,即可求实数m的取值范围;
(2)当m=-1时,求导数,确定函数的单调性,即可求函数f(x)的最大值;
(3)当m=1时,f(x)=$\frac{1}{2}$ln(1+2x)+x,当1≥a>b≥0,a-b>0,作差,即可证明结论.
解答 (1)解:f(x)=$\frac{1}{2}$ln(1+2x)+mx,(x>-$\frac{1}{2}$),∴f'(x)=$\frac{1}{1+2x}$+m,
由f'(x)=$\frac{1}{1+2x}$+m≥0恒成立.∴m≥-$\frac{1}{1+2x}$,而-$\frac{1}{1+2x}$<0,所以m≥0.
(2)解:当m=-1时,由f'(x)=$\frac{1}{1+2x}$-1=-$\frac{2x}{1+2x}$=0,得x=0.
当x∈(-$\frac{1}{2}$,0)时,f'(x)>0;当x∈(0,+∞)时,f'(x)<0.
∴f(x)在x=0时取得最大值.∴此时函数f(x)的最大值为f(0)=0.
(3)证明:由(2)得,ln$\sqrt{1+2x}$≤x对x>-$\frac{1}{2}$恒成立,当且仅当x=0时取等号.
当m=1时,f(x)=$\frac{1}{2}$ln(1+2x)+x,当1≥a>b≥0,a-b>0,
∴f(b)-f(a)=ln$\sqrt{\frac{1+2b}{1+2a}}$+(b-a)=ln$\sqrt{1+\frac{{2({b-a})}}{1+2a}}$+(b-a)<$\frac{b-a}{1+2a}$+(b-a)
=-$\frac{{({a-b})({2+2a})}}{1+2a}$.∴$\frac{f(a)-f(b)}{a-b}>\frac{2+2a}{1+2a}$同理$\frac{f(a)-f(b)}{a-b}<\frac{2+2b}{1+2b}$
又1≥a>b≥0,$\frac{2+2a}{1+2a}=1+\frac{1}{1+2a}≥\frac{4}{3}$,$\frac{2+2b}{1+2b}=1+\frac{1}{1+2b}≤2$,∴$\frac{4}{3}<\frac{f(a)-f(b)}{a-b}<2$.
点评 本题主要考查函数单调性和导数之间的关系,考查导数的基本应用,综合性较强.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{x-1}$ | B. | y=2x-1 | C. | y=$\sqrt{x-1}$ | D. | y=ln(x-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [kπ,kπ+$\frac{π}{2}$](k∈Z) | B. | [kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z) | C. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) | D. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com