精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=cos(2x+φ)(0<φ<π),若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,则f(x)的单调递减区间是(  )
A.[kπ,kπ+$\frac{π}{2}$](k∈Z)B.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)D.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)

分析 由若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,结合函数最值的定义,求得f($\frac{π}{6}$)等于函数的最大值或最小值,由此可以确定满足条件的初相角φ的值,再根据余弦型函数单调区间的求法,即可得到答案.

解答 解:若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,
则f($\frac{π}{6}$)等于函数的最大值或最小值,
即2×$\frac{π}{6}$+φ=kπ,k∈Z,
则φ=kπ-$\frac{π}{3}$,k∈Z,
又0<φ<π,
所以φ=$\frac{2π}{3}$,
所以f(x)=cos(2x+$\frac{2π}{3}$);
令2x+$\frac{2π}{3}$∈[2kπ,2kπ+π],k∈Z,
解得x∈[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z);
则f(x)的单调递减区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).
故选:D.

点评 本题主要考查了余弦型函数的图象与性质的应用问题,其中解题的关键是根据已知条件求出满足条件的初相角φ的值,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{2}$ln(1+2x)+mx.
(1)f(x)在定义域上单调递增,求实数m的取值范围;
(2)当m=-1时,求函数f(x)的最大值;
(3)当m=1,且0≤b<a≤1,证明:$\frac{4}{3}$<$\frac{f(a)-f(b)}{a-b}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}中,a4+a6=10,前5项和S5=5,则其公差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解不等式|x+2|+|x-2|<x+7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在三棱锥S-ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,$SA=SC=\sqrt{3}$,E,F分别为AB,SB的中点.
(1)证明:AC⊥SB;
(2)求锐二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}的前n项和为Sn,若a8≠0且S15-λa8=0,则实数λ=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$f(x)={cos^4}x+2\sqrt{3}sinxcosx-{sin^4}x$.
(1)求f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)若$x∈[{0,\frac{π}{2}}]$,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\overrightarrow a=(-2,-1),\overrightarrow b=(λ,1)$,则$\overrightarrow a与\overrightarrow b$夹角θ为钝角时,λ取值范围为(  )
A.$λ>-\frac{1}{2}$B.$λ<-\frac{1}{2}$C.λ>-$\frac{1}{2}$且λ≠2D.λ<-$\frac{1}{2}$且λ≠2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(α)=$\frac{{{{cos}^2}(\frac{3π}{2}-α)sin(\frac{π}{2}+α)tan(-π+α)}}{sin(-π+α)tan(-α+3π)}$.
(1)化简f(α);
(2)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值.

查看答案和解析>>

同步练习册答案