精英家教网 > 高中数学 > 题目详情
13.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图计算乙班同学的平均身高; 
(2)计算甲班的样本方差.
(方差公式S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+(x3-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…xn平均数)
(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.

分析 (1)根据茎叶图中的数据,计算乙的平均数即可;
(2)计算甲的平均数和方差;
(3)利用列举法求出基本事件数,计算对应的概率值.

解答 解:(1)根据茎叶图中的数据,计算乙的平均数为
${\bar x_乙}=\frac{1}{10}(181+170+173+176+178+179+162+165+168+159)=171.1$;…..(3分)
(2)计算甲的平均数是
${\bar x_甲}=\frac{1}{10}(182+170+171+179+179+162+163+168+168+158)=170$;…..(6分)
方差为${S^2}_甲=\frac{1}{10}[({12^2}+1{\;}^2+{9^2}×2+{8^2}+{7^2}+{2^2}×2+{12^2})=57.2$;…(9分)
(3)不低于173cm的同学共有173cm,176cm,178 cm,179 cm,181 cm五名,
选取两名的情况有(173,176),(173,178),(173,179),(173,181),
(176,178),(176,179),(176,181),(178,179),(178,181),
(179,181)共10种,
满足题意的有4种;
设身高为176的同学被抽中的事件为A,
则$P(A)=\frac{4}{10}=\frac{2}{5}$.…(13分)

点评 本题考查了平均数、方差与列举法求古典概型的概率问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知f(x)=ln(e2x+1)+xcos2x,则f($\frac{π}{3}$)-f(-$\frac{π}{3}$)=(  )
A.0B.$\frac{π}{3}$C.πD.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2-(2a-1)x-lnx(a为常数,a≠0).
(Ⅰ)当a<0时,求函数f(x)在区间[1,2]上的最大值;
(Ⅱ)记函数f(x)图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知M={x|0≤x≤3},N={y|y≤1},则M*N=(  )
A.(1,3]B.(-∞,0)∪(1,3]C.(-∞,3]D.(-∞,0]∪[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,则$\vec a•(\vec a-\vec b)$的值为(  )
A.1B.-1C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|cosx|•sinx,给出下列四个说法:
①$f(\frac{2014π}{3})=-\frac{{\sqrt{3}}}{4}$;
②函数f(x)的周期为π;
③f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上单调递增;
④f(x)的图象关于点$(-\frac{π}{2},0)$中心对称
其中正确说法的序号是(  )
A.②③B.①③C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足(1+i)z=|1-i|(i为复数单位),则 z的共轭复数为(  )
A.1+iB.1-iC.$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.抛物线的顶点在原点,对称轴为y轴,抛物线上一点(x0,2)到焦点的距离为3,则抛物线方程为x2=4y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,内角A,B,C的对边分别为a,b,c,cosA=$\frac{4\sqrt{3}}{3}$sin2C-cos(B-C),且$\frac{π}{2}$是A与3C的等差中项
(1)求tanB的值
(2)若b=2$\sqrt{2}$,求三角形△ABC的面积.

查看答案和解析>>

同步练习册答案