精英家教网 > 高中数学 > 题目详情
3.已知f(x)=ln(e2x+1)+xcos2x,则f($\frac{π}{3}$)-f(-$\frac{π}{3}$)=(  )
A.0B.$\frac{π}{3}$C.πD.$\frac{4π}{3}$

分析 根据函数解析式先进行化简,然后求解即可.

解答 解:∵f(x)=ln(e2x+1)+xcos2x,
∴f(x)-f(-x)=ln(e2x+1)+xcos2x-ln(e-2x+1)+xcos2x
=ln$\frac{{e}^{2x}+1}{{e}^{-2x}+1}$+2xcos2x=lne2x+2xcos2x=2x+2xcos2x,
则f($\frac{π}{3}$)-f(-$\frac{π}{3}$)=2×$\frac{π}{3}$+2×$\frac{π}{3}$cos$\frac{2π}{3}$=$\frac{2π}{3}$+$\frac{2π}{3}$×$(-\frac{1}{2})$=$\frac{π}{3}$,
故选:B

点评 本题主要考查函数值的计算,根据函数解析式先进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f($\frac{5π}{8}$)=2,f($\frac{11π}{8}$)=0,且f(x)的最小正周期大于2π,则(  )
A.ω=$\frac{2}{3}$,φ=$\frac{π}{12}$B.ω=$\frac{2}{3}$,φ=-$\frac{11π}{12}$C.ω=$\frac{1}{3}$,φ=-$\frac{11π}{24}$D.ω=$\frac{1}{3}$,φ=$\frac{7π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0成立.
(1)判断f(x)在[-1,1]上的单调性,并用定义证明;
(2)解不等式:f(2x-1)>f(x2-1);
(3)若f(x)≤m2-3am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足不等式组$\left\{\begin{array}{l}{1≤x+y≤2}\\{-1≤x-y≤1}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求解以下两小题:
(1)91100除以100的余数是几?
(2)若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求:
(i)a1+a2+a3+…+a11
(ii)a0+a2+a4+…+a10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤k(k≥0),则称f(x)与g(x)在[a,b]上是“k度和谐函数”,[a,b]称为“k度密切区间”.设函数f(x)=lnx与$g(x)=\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“e度和谐函数”,则m的取值范围是-1≤m≤1+e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=x3+3x2+6x+14且f(a)=1,f(b)=19.则a+b=(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足a1=1,an+1=an2+an,设bn=$\frac{1}{{a}_{n}+1}$,用[x]表示不超过x的最大整数,则[b1+b2+…+b8]的值为(  )
A.1B.0C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图计算乙班同学的平均身高; 
(2)计算甲班的样本方差.
(方差公式S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+(x3-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…xn平均数)
(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.

查看答案和解析>>

同步练习册答案