精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f($\frac{5π}{8}$)=2,f($\frac{11π}{8}$)=0,且f(x)的最小正周期大于2π,则(  )
A.ω=$\frac{2}{3}$,φ=$\frac{π}{12}$B.ω=$\frac{2}{3}$,φ=-$\frac{11π}{12}$C.ω=$\frac{1}{3}$,φ=-$\frac{11π}{24}$D.ω=$\frac{1}{3}$,φ=$\frac{7π}{24}$

分析 由题意求得$\frac{T}{4}$,再由周期公式求得ω,最后由若f($\frac{5π}{8}$)=2求得φ值.

解答 解:由f(x)的最小正周期大于2π,得$\frac{T}{4}$$>\frac{π}{2}$,
又f($\frac{5π}{8}$)=2,f($\frac{11π}{8}$)=0,得$\frac{T}{4}=\frac{11π}{8}-\frac{5π}{8}=\frac{3π}{4}$,
∴T=3π,则$\frac{2π}{ω}=3π$,即$ω=\frac{2}{3}$.
∴f(x)=2sin(ωx+φ)=2sin($\frac{2}{3}$x+φ),
由f($\frac{5π}{8}$)=$2sin(\frac{2}{3}×\frac{5π}{8}+φ)=2$,得sin(φ+$\frac{5π}{12}$)=1.
∴φ+$\frac{5π}{12}$=$\frac{π}{2}+2kπ$,k∈Z.
取k=0,得φ=$\frac{π}{12}$<π.
∴$ω=\frac{2}{3}$,φ=$\frac{π}{12}$.
故选:A.

点评 本题考查由三角函数的部分图象求解析式,考查y=Asin(ωx+φ)型函数的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sinx-cosx,g(x)=sin2x
(1)试说明由函数y=g(x)的图象经过变换得到函数y=f(x)的图象的变换过程;
(2)若h(x)=f(x)+g(x),求函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在极坐标系中,点A在圆ρ2-2ρcosθ-4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是$\widehat{DF}$的中点.
(Ⅰ)设P是$\widehat{CE}$上的一点,且AP⊥BE,求∠CBP的大小;
(Ⅱ)当AB=3,AD=2时,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x+y≥0}\\{x+2y-2≥0}\\{x≤0}\\{y≤3}\end{array}\right.$,则目标函数z=x+y的最大值为(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若a,b∈R,ab>0,则$\frac{{a}^{4}+4{b}^{4}+1}{ab}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,右顶点为A,离心率为$\frac{1}{2}$.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为$\frac{1}{2}$.
(I)求椭圆的方程和抛物线的方程;
(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为$\frac{\sqrt{6}}{2}$,求直线AP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1、F2分别是椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的上,下焦点,A,B分别为椭圆的左、右顶点,过椭圆的上焦点F1的直线在x轴上方部分交椭圆于C、D两点,△F2CD的周长为8,若椭圆的离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆的方程;
(2)设四边形ABCD的而积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=ln(e2x+1)+xcos2x,则f($\frac{π}{3}$)-f(-$\frac{π}{3}$)=(  )
A.0B.$\frac{π}{3}$C.πD.$\frac{4π}{3}$

查看答案和解析>>

同步练习册答案