2£®ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉÏ£¬Ï½¹µã£¬A£¬B·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬¹ýÍÖÔ²µÄÉϽ¹µãF1µÄÖ±ÏßÔÚxÖáÉÏ·½²¿·Ö½»ÍÖÔ²ÓÚC¡¢DÁ½µã£¬¡÷F2CDµÄÖܳ¤Îª8£¬ÈôÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèËıßÐÎABCDµÄ¶ø»ýΪS£¬ÇóSµÄ×î´óÖµ£®

·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬Ôò4a=8£¬a=2£¬¸ù¾ÝÀëÐÄÂʹ«Ê½£¬¼´¿ÉÇóµÃc£¬Ôòb2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±ÏßCDµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬¼°º¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉÇóµÃSµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄ¶¨Ò娭CF1Ø­+Ø­CF2Ø­=2a£¬Ø­DF1Ø­+Ø­DF2Ø­=2a£¬¡÷F2CDµÄÖܳ¤ÎªÎª4a£¬
¡à4a=8£¬Ôòa=2£¬
ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬c=$\sqrt{3}$£¬b2=a2-c2=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{y}^{2}}{4}+{x}^{2}=1$£»
£¨2£©ÓÉ£¨1£©Öª£ºF1£¨0£¬$\sqrt{3}$£©£¬¹ÊÉèÖ±Ïßy=kx+$\sqrt{3}$£¬C£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{y=kx+\sqrt{3}}\\{\frac{{y}^{2}}{4}+{x}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨k2+4£©x2+2$\sqrt{3}$kx-1=0£¬
Ôòx1+x2=-$\frac{2\sqrt{3}k}{{k}^{2}+4}$£¬x1x2=-$\frac{1}{{k}^{2}+4}$£¬
Ø­x1-x1Ø­=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{{k}^{2}+1}}{{k}^{2}+4}$£¬ÓÉy1£¾0£¬y2£¾0£¬µÃ0¡Ük2£¼3£¬
Ôòy1+y2=k£¨x1+x2£©+2$\sqrt{3}$=$\frac{8\sqrt{3}}{{k}^{2}+4}$£¬
¡àËıßÐÎABCDµÄÃæ»ýS£¬S=SAOC+SBOD+SOCD=$\frac{1}{2}$¡Á$\frac{8\sqrt{3}}{{k}^{2}+4}$+$\frac{1}{2}$¡Á$\sqrt{3}$¡Á$\frac{4\sqrt{{k}^{2}+1}}{{k}^{2}+4}$=$\frac{2\sqrt{3}£¨\sqrt{{k}^{2}+1}+2£©}{{k}^{2}+4}$£¬
Áît=$\sqrt{{k}^{2}+1}$+2£¬t¡Ê[3£¬4£©£¬
ÔòS=$\frac{2\sqrt{3}t}{£¨t-2£©^{2}+3}$=$\frac{2\sqrt{3}}{t+\frac{7}{t}-4}$ÔÚt¡Ê[3£¬4£©Éϵ¥µ÷µÝ¼õ£¬
¡àS¡Ê£¨$\frac{8\sqrt{3}}{7}$£¬$\frac{3\sqrt{3}}{2}$]£¬
¡àSµÄ×î´óÖµ$\frac{3\sqrt{3}}{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬º¯Êýµ¥µ÷ÐÔÓëÍÖÔ²µÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÊýÁÐ{xn}Âú×㣺x1=1£¬xn=xn+1+ln£¨1+xn+1£©£¨n¡ÊN*£©£¬Ö¤Ã÷£ºµ±n¡ÊN*ʱ£¬
£¨¢ñ£©0£¼xn+1£¼xn£»
£¨¢ò£©2xn+1-xn¡Ü$\frac{{x}_{n}{x}_{n+1}}{2}$£»
£¨¢ó£©$\frac{1}{{2}^{n-1}}$¡Üxn¡Ü$\frac{1}{{2}^{n-2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®É躯Êýf£¨x£©=2sin£¨¦Øx+¦Õ£©£¬x¡ÊR£¬ÆäÖЦأ¾0£¬|¦Õ|£¼¦Ð£®Èôf£¨$\frac{5¦Ð}{8}$£©=2£¬f£¨$\frac{11¦Ð}{8}$£©=0£¬ÇÒf£¨x£©µÄ×îСÕýÖÜÆÚ´óÓÚ2¦Ð£¬Ôò£¨¡¡¡¡£©
A£®¦Ø=$\frac{2}{3}$£¬¦Õ=$\frac{¦Ð}{12}$B£®¦Ø=$\frac{2}{3}$£¬¦Õ=-$\frac{11¦Ð}{12}$C£®¦Ø=$\frac{1}{3}$£¬¦Õ=-$\frac{11¦Ð}{24}$D£®¦Ø=$\frac{1}{3}$£¬¦Õ=$\frac{7¦Ð}{24}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔĶÁÈçͼµÄ³ÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬ÈôÊäÈëNµÄֵΪ19£¬ÔòÊä³öNµÄֵΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬AD¡ÍÆ½ÃæPDC£¬AD¡ÎBC£¬PD¡ÍPB£¬AD=1£¬BC=3£¬CD=4£¬PD=2£®
£¨¢ñ£©ÇóÒìÃæÖ±ÏßAPÓëBCËù³É½ÇµÄÓàÏÒÖµ£»
£¨¢ò£©ÇóÖ¤£ºPD¡ÍÆ½ÃæPBC£»
£¨¢ó£©ÇóÖ±ÏßABÓëÆ½ÃæPBCËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{k}$=1µÄÁ½¸ö½¹µãF1¡¢F2£¬ÆäÒ»Ìõ½¥½üÏß·½³Ìy=x£¬ÈôP£¨m£¬1£©ÔÚË«ÇúÏßÉÏ£¬Çó$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êý£¬ÇÒf£¨1£©=1£¬Èôa£¬b¡Ê[-1£¬1]£¬a+b¡Ù0ʱ£¬ÓÐ$\frac{f£¨a£©+f£¨b£©}{a+b}$£¾0³ÉÁ¢£®
£¨1£©ÅжÏf£¨x£©ÔÚ[-1£¬1]Éϵĵ¥µ÷ÐÔ£¬²¢Óö¨ÒåÖ¤Ã÷£»
£¨2£©½â²»µÈʽ£ºf£¨2x-1£©£¾f£¨x2-1£©£»
£¨3£©Èôf£¨x£©¡Üm2-3am+1¶ÔËùÓеÄa¡Ê[-1£¬1]ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑ֪ʵÊýx£¬yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{1¡Üx+y¡Ü2}\\{-1¡Üx-y¡Ü1}\end{array}\right.$£¬Ôòz=$\frac{y+1}{x+1}$µÄ×î´óÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=an2+an£¬Éèbn=$\frac{1}{{a}_{n}+1}$£¬ÓÃ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Ôò[b1+b2+¡­+b8]µÄֵΪ£¨¡¡¡¡£©
A£®1B£®0C£®2D£®8

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸