·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬Ôò4a=8£¬a=2£¬¸ù¾ÝÀëÐÄÂʹ«Ê½£¬¼´¿ÉÇóµÃc£¬Ôòb2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±ÏßCDµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬¼°º¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉÇóµÃSµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄ¶¨ÒåØCF1Ø+ØCF2Ø=2a£¬ØDF1Ø+ØDF2Ø=2a£¬¡÷F2CDµÄÖܳ¤ÎªÎª4a£¬
¡à4a=8£¬Ôòa=2£¬
ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬c=$\sqrt{3}$£¬b2=a2-c2=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{y}^{2}}{4}+{x}^{2}=1$£»
£¨2£©ÓÉ£¨1£©Öª£ºF1£¨0£¬$\sqrt{3}$£©£¬¹ÊÉèÖ±Ïßy=kx+$\sqrt{3}$£¬C£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{y=kx+\sqrt{3}}\\{\frac{{y}^{2}}{4}+{x}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨k2+4£©x2+2$\sqrt{3}$kx-1=0£¬
Ôòx1+x2=-$\frac{2\sqrt{3}k}{{k}^{2}+4}$£¬x1x2=-$\frac{1}{{k}^{2}+4}$£¬
Øx1-x1Ø=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{{k}^{2}+1}}{{k}^{2}+4}$£¬ÓÉy1£¾0£¬y2£¾0£¬µÃ0¡Ük2£¼3£¬
Ôòy1+y2=k£¨x1+x2£©+2$\sqrt{3}$=$\frac{8\sqrt{3}}{{k}^{2}+4}$£¬
¡àËıßÐÎABCDµÄÃæ»ýS£¬S=SAOC+SBOD+SOCD=$\frac{1}{2}$¡Á$\frac{8\sqrt{3}}{{k}^{2}+4}$+$\frac{1}{2}$¡Á$\sqrt{3}$¡Á$\frac{4\sqrt{{k}^{2}+1}}{{k}^{2}+4}$=$\frac{2\sqrt{3}£¨\sqrt{{k}^{2}+1}+2£©}{{k}^{2}+4}$£¬
Áît=$\sqrt{{k}^{2}+1}$+2£¬t¡Ê[3£¬4£©£¬
ÔòS=$\frac{2\sqrt{3}t}{£¨t-2£©^{2}+3}$=$\frac{2\sqrt{3}}{t+\frac{7}{t}-4}$ÔÚt¡Ê[3£¬4£©Éϵ¥µ÷µÝ¼õ£¬
¡àS¡Ê£¨$\frac{8\sqrt{3}}{7}$£¬$\frac{3\sqrt{3}}{2}$]£¬
¡àSµÄ×î´óÖµ$\frac{3\sqrt{3}}{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬º¯Êýµ¥µ÷ÐÔÓëÍÖÔ²µÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¦Ø=$\frac{2}{3}$£¬¦Õ=$\frac{¦Ð}{12}$ | B£® | ¦Ø=$\frac{2}{3}$£¬¦Õ=-$\frac{11¦Ð}{12}$ | C£® | ¦Ø=$\frac{1}{3}$£¬¦Õ=-$\frac{11¦Ð}{24}$ | D£® | ¦Ø=$\frac{1}{3}$£¬¦Õ=$\frac{7¦Ð}{24}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 0 | C£® | 2 | D£® | 8 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com