| A. | 1 | B. | 0 | C. | 2 | D. | 8 |
分析 数列{an}是增数列,且 an+1=an2+an=an(1+an),得到$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+1}$,从而 b1+b2+…+b8=$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}+…+\frac{1}{{a}_{8}+1}$=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{9}}$<$\frac{1}{{a}_{1}}$=1,由此能求出[b1+b2+…+b8]
解答 解:∵数列{an}满足:a1=1,an+1=an2+an,
∴an+1-an=an2>0,
∴数列{an}是增数列,且 $\frac{1}{{a}_{n}}$>0,
∵an+1=an2+an=an(1+an),
∴$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+1}$,从而 b1+b2+…+b8=$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}+…+\frac{1}{{a}_{8}+1}$=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{9}}$<$\frac{1}{{a}_{1}}$=1,
a1=1,a2=2,a3=6,>1,
∴b1+b2+…+b8∈(0,1),
∴[b1+b2+…+b8]=0.
故选:B.
点评 本题考查等差数列的前n项和的求法及应用,是中档题,解题时要注意裂项求和法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{3}$ | C. | π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,e-2) | B. | (e-2,+∞) | C. | (0,e2) | D. | (e2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3] | B. | (-∞,0)∪(1,3] | C. | (-∞,3] | D. | (-∞,0]∪[1,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com