精英家教网 > 高中数学 > 题目详情
7.已知双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{k}$=1的两个焦点F1、F2,其一条渐近线方程y=x,若P(m,1)在双曲线上,求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的值.

分析 利用双曲线的渐近线方程求出k,得到双曲线方程,然后求解P的坐标,求出焦点坐标,然后求解向量的数量积.

解答 解:双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{k}$=1的两个焦点F1、F2,其一条渐近线方程y=x,
可得k=2,若P(m,1)在双曲线上,可知:m2-1=2,m=$±\sqrt{3}$,
由双曲线的对称性,不妨取P($\sqrt{3}$,1),
双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1的两个焦点F1(-2,0),F2(2,0),
$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-2-$\sqrt{3}$,-1)(2-$\sqrt{3}$,-1)=-(4-3)+1=0.
$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的值为0.

点评 本题考查双曲线的简单性质的应用,向量的数量积,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若$\overrightarrow{PA}•\overrightarrow{PB}$≤20,则点P的横坐标的取值范围是[-5$\sqrt{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若a,b∈R,ab>0,则$\frac{{a}^{4}+4{b}^{4}+1}{ab}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=$\sqrt{5}$(a2-b2-c2).
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B-A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1、F2分别是椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的上,下焦点,A,B分别为椭圆的左、右顶点,过椭圆的上焦点F1的直线在x轴上方部分交椭圆于C、D两点,△F2CD的周长为8,若椭圆的离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆的方程;
(2)设四边形ABCD的而积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数y=f(x)的定义域为R,对于?x∈R,f′(x)<f(x),且f(x+1)为偶函数,f(2)=1,不等式f(x)<ex的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合W由满足下列两个条件的数列{an}构成:
①$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1;  ②存在实数M,使an≤M.(n为正整数).
在以下数列(1){n2+1};(2){$\frac{2n+9}{2n+11}$};  (3){2+$\frac{4}{n}$};(4){1-$\frac{1}{{2}^{n}}$}中属于集合W的数列编号为(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x3+ax2+bx有两个极值点x1、x2,且x1<x2,若x1+2x0=3x2,函数g(x)=f(x)-f(x0),则g(x)(  )
A.恰有一个零点B.恰有两个零点C.恰有三个零点D.至多两个零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+$\frac{1}{x}$,x∈(0,1].
(1)求f(x)的极值点;
(2)证明:f(x)>$\sqrt{x}$+$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案