精英家教网 > 高中数学 > 题目详情
19.设集合W由满足下列两个条件的数列{an}构成:
①$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1;  ②存在实数M,使an≤M.(n为正整数).
在以下数列(1){n2+1};(2){$\frac{2n+9}{2n+11}$};  (3){2+$\frac{4}{n}$};(4){1-$\frac{1}{{2}^{n}}$}中属于集合W的数列编号为(2)(4).

分析 (1)数列{n2+1}是无界的,因此不存在实数M,使an≤M.(n为正整数),故不属于集合W.
(2)$\frac{2n+9}{2n+11}$=1-$\frac{2}{2n+11}$.作差an+an+2-2an+1=$\frac{-16}{(2n+11)(2n+13)(2n+15)}$<0,因此满足:$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1; 由于$\frac{2n+9}{2n+11}$=1-$\frac{2}{2n+11}$<1.因此存在实数M=1,使an≤M.可得(2)属于集合W.
(3)作差an+an+2-2an+1>0,因此不满足:$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1; 故不属于集合W.
(4)an+an+2-2an+1=$\frac{2}{{2}^{n+1}}$-$\frac{1}{{2}^{n}}$-$\frac{1}{{2}^{n+2}}$=-$\frac{1}{{2}^{n+2}}$<0,因此满足:$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1; 由于1-$\frac{1}{{2}^{n}}$<1.因此存在实数M=1,使an≤M.即可判断出结论.

解答 解:(1)数列{n2+1}是无界的,因此不存在实数M,使an≤M.(n为正整数),故不属于集合W.
(2)$\frac{2n+9}{2n+11}$=1-$\frac{2}{2n+11}$.
an+an+2-2an+1=$\frac{4}{2n+13}$-$\frac{2}{2n+11}$-$\frac{2}{2n+15}$=$\frac{-16}{(2n+11)(2n+13)(2n+15)}$<0,因此满足:$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1; 
由于$\frac{2n+9}{2n+11}$=1-$\frac{2}{2n+11}$<1.因此存在实数M=1,使an≤M.
综上可得:(2)满足条件①②,属于集合W.
(3)an+an+2-2an+1=$\frac{4}{n}+\frac{4}{n+2}$-$\frac{8}{n+1}$=$\frac{8}{n(n+1)(n+2)}$>0,因此不满足:$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1; 故不属于集合W.
(4)an+an+2-2an+1=$\frac{2}{{2}^{n+1}}$-$\frac{1}{{2}^{n}}$-$\frac{1}{{2}^{n+2}}$=-$\frac{1}{{2}^{n+2}}$<0,因此满足:$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1; 
由于1-$\frac{1}{{2}^{n}}$<1.因此存在实数M=1,使an≤M.综上可得:(4)满足条件①②,属于集合W.
故答案为:(2)(4).

点评 本题考查了数列通项公式、作差法、新定义、数列的有界性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{k}$=1的两个焦点F1、F2,其一条渐近线方程y=x,若P(m,1)在双曲线上,求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0成立.
(1)判断f(x)在[-1,1]上的单调性,并用定义证明;
(2)解不等式:f(2x-1)>f(x2-1);
(3)若f(x)≤m2-3am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)证明:如果a>0,b>0,那么$\frac{a}{{\sqrt{b}}}+\frac{b}{{\sqrt{a}}}≥\sqrt{a}+\sqrt{b}$;
(2)已知2x+3y+4z=10,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足不等式组$\left\{\begin{array}{l}{1≤x+y≤2}\\{-1≤x-y≤1}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤k(k≥0),则称f(x)与g(x)在[a,b]上是“k度和谐函数”,[a,b]称为“k度密切区间”.设函数f(x)=lnx与$g(x)=\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“e度和谐函数”,则m的取值范围是-1≤m≤1+e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{x}{lnx}$-ax,a∈R
(1)若函数f(x)存在单调递增区间,求a的取值范围;
(2)若存在x∈[e,e2],使得不等式f(x)≤$\frac{1}{4}$成立,求a的取值范围.

查看答案和解析>>

同步练习册答案