分析 由“e度和谐函数”,得到对任意的x∈[$\frac{1}{e}$,e],都有|f(x)-g(x)|≤e,化简整理得m-e≤lnx+$\frac{1}{x}$≤m+e,令h(x)=lnx+$\frac{1}{x}$($\frac{1}{e}$≤x≤e),求出h(x)的最值,只要m-e不大于最小值,且m+e不小于最大值即可.
解答 解:∵函数f(x)=lnx与g(x)=$\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“e度和谐函数”,
∴对任意的x∈[$\frac{1}{e}$,e],都有|f(x)-g(x)|≤e,
即有|lnx+$\frac{1}{x}$-m|≤e,即m-e≤lnx+$\frac{1}{x}$≤m+e,
令h(x)=lnx+$\frac{1}{x}$($\frac{1}{e}$≤x≤e),h′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
x>1时,h′(x)>0,x<1时,h′(x)<0,
x=1时,h(x)取极小值1,也为最小值,
故h(x)在[$\frac{1}{e}$,e]上的最小值是1,最大值是e-1.
∴m-e≤1且m+e≥e-1,
∴-1≤m≤e+1.
故答案为:-1≤m≤1+e
点评 本题考查新定义及运用,考查不等式的恒成立问题,转化为求函数的最值,注意运用导数求解,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 恰有一个零点 | B. | 恰有两个零点 | C. | 恰有三个零点 | D. | 至多两个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{3}$ | C. | π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,e-2) | B. | (e-2,+∞) | C. | (0,e2) | D. | (e2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②③ | B. | ①③ | C. | ①④ | D. | ①③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com