精英家教网 > 高中数学 > 题目详情
11.已知命题p:?x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

分析 由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.

解答 解:命题p:?x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;
取a=-1,b=-2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.
∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.
故选B.

点评 本题考查命题真假性的判断,复合命题的真假性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=$\sqrt{6}$,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B-PD-A的大小;
(3)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知θ∈($\frac{π}{2}$,π),tan(θ-$\frac{π}{4}$)=-$\frac{4}{3}$,则sin(θ+$\frac{π}{4}$)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若$\overrightarrow{PA}•\overrightarrow{PB}$≤20,则点P的横坐标的取值范围是[-5$\sqrt{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在极坐标系中,点A在圆ρ2-2ρcosθ-4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是(  )
A.$\frac{5}{18}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是$\widehat{DF}$的中点.
(Ⅰ)设P是$\widehat{CE}$上的一点,且AP⊥BE,求∠CBP的大小;
(Ⅱ)当AB=3,AD=2时,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若a,b∈R,ab>0,则$\frac{{a}^{4}+4{b}^{4}+1}{ab}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合W由满足下列两个条件的数列{an}构成:
①$\frac{{a}_{n}+{a}_{n+2}}{2}$<an+1;  ②存在实数M,使an≤M.(n为正整数).
在以下数列(1){n2+1};(2){$\frac{2n+9}{2n+11}$};  (3){2+$\frac{4}{n}$};(4){1-$\frac{1}{{2}^{n}}$}中属于集合W的数列编号为(2)(4).

查看答案和解析>>

同步练习册答案