精英家教网 > 高中数学 > 题目详情
17.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=$\sqrt{6}$,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B-PD-A的大小;
(3)求直线MC与平面BDP所成角的正弦值.

分析 (1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;
(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B-PD-A的大小;
(3)求出$\overrightarrow{CM}$的坐标,由$\overrightarrow{CM}$与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.

解答 (1)证明:如图,设AC∩BD=O,
∵ABCD为正方形,∴O为BD的中点,连接OM,
∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM,
∴PD∥OM,则$\frac{BO}{BD}=\frac{BM}{BP}$,即M为PB的中点;
(2)解:取AD中点G,
∵PA=PD,∴PG⊥AD,
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,
由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.
以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,
由PA=PD=$\sqrt{6}$,AB=4,得D(2,0,0),A(-2,0,0),P(0,0,$\sqrt{2}$),C(2,4,0),B(-2,4,0),M(-1,2,$\frac{\sqrt{2}}{2}$),
$\overrightarrow{DP}=(-2,0,\sqrt{2})$,$\overrightarrow{DB}=(-4,4,0)$.
设平面PBD的一个法向量为$\overrightarrow{m}=(x,y,z)$,
则由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DP}=0}\\{\overrightarrow{m}•\overrightarrow{DB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-2x+\sqrt{2}z=0}\\{-4x+4y=0}\end{array}\right.$,取z=$\sqrt{2}$,得$\overrightarrow{m}=(1,1,\sqrt{2})$.
取平面PAD的一个法向量为$\overrightarrow{n}=(0,1,0)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{2×1}=\frac{1}{2}$.
∴二面角B-PD-A的大小为60°;
(3)解:$\overrightarrow{CM}=(-3,-2,\frac{\sqrt{2}}{2})$,平面BDP的一个法向量为$\overrightarrow{m}=(1,1,\sqrt{2})$.
∴直线MC与平面BDP所成角的正弦值为|cos<$\overrightarrow{CM},\overrightarrow{m}$>|=|$\frac{\overrightarrow{CM}•\overrightarrow{m}}{|\overrightarrow{CM}||\overrightarrow{m}|}$|=|$\frac{-2}{\sqrt{9+4+\frac{1}{2}}×1}$|=$\frac{2\sqrt{6}}{9}$.

点评 本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,则满足f(x)+f(x-$\frac{1}{2}$)>1的x的取值范围是($-\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4$\sqrt{15}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(  )
A.3$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=(  )
A.{1,-3}B.{1,0}C.{1,3}D.{1,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sin2x+$\sqrt{3}$cosx-$\frac{3}{4}$(x∈[0,$\frac{π}{2}$])的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,则该几何体的体积$\frac{75}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

同步练习册答案