精英家教网 > 高中数学 > 题目详情
2.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=(  )
A.{1,-3}B.{1,0}C.{1,3}D.{1,5}

分析 由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.

解答 解:集合A={1,2,4},B={x|x2-4x+m=0}.
若A∩B={1},则1∈A且1∈B,
可得1-4+m=0,解得m=3,
即有B={x|x2-4x+3=0}={1,3}.
故选:C.

点评 本题考查集合的运算,主要是交集的求法,同时考查二次方程的解法,运用定义法是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与$\frac{M}{N}$最接近的是(  )
(参考数据:lg3≈0.48)
A.1033B.1053C.1073D.1093

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=$\sqrt{6}$,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B-PD-A的大小;
(3)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,则f(x)的极小值为(  )
A.-1B.-2e-3C.5e-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2-ax-xlnx,且f(x)≥0.
(1)求a;
(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC的面积为$5\sqrt{3},A=\frac{π}{6},AB=5$,则BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是(  )
A.$\frac{5}{18}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

同步练习册答案