精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=sinx-cosx,g(x)=sin2x
(1)试说明由函数y=g(x)的图象经过变换得到函数y=f(x)的图象的变换过程;
(2)若h(x)=f(x)+g(x),求函数h(x)的值域.

分析 (1)由已知可得$f(x)=\sqrt{2}sin({x-\frac{π}{4}})$,由函数y=Asin(ωx+φ)的图象变换规律即可得解.
(2)令sinx-cosx=t,则可求sin2x=1-t2,可得h(x)=f(x)+g(x)=φ(t)=-t2+t+1,由t的范围,结合二次函数的性质可求值域.

解答 (本题满分为12分)
解:(1)$f(x)=\sqrt{2}sin({x-\frac{π}{4}})$…(2分)
故先将y=sin2x的图象上所有点纵坐标不变,横坐标伸长到原来的两倍得到y=sinx的图象,
再将y=sinx的图象上所有点横坐标不变,纵坐标伸长到原来的$\sqrt{2}$倍得到$y=\sqrt{2}sinx$的图象,
再把所得图象向左平移$\frac{π}{4}$个单位,即得到$y=\sqrt{2}sin({x-\frac{π}{4}})$的图象.…(5分)
(2)令sinx-cosx=t,则1-2sinxcosx=t2
故sin2x=1-t2
故h(x)=f(x)+g(x)=φ(t)=-t2+t+1…(7分)
由(1)知,$t∈[{-\sqrt{2},\sqrt{2}}],所以φ(t)在[{-\sqrt{2},\frac{1}{2}}]递增,[{\frac{1}{2},\sqrt{2}}]递减$,
所以$φ(t)∈[{-\sqrt{2}-1,\frac{5}{4}}]$,故h(x)的值域为$[{-\sqrt{2}-1,\frac{5}{4}}]$….(12分)

点评 本题值域考查了函数y=Asin(ωx+φ)的图象变换,二次函数的图象和性质的综合应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(  )
A.3$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sin2x+$\sqrt{3}$cosx-$\frac{3}{4}$(x∈[0,$\frac{π}{2}$])的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则(  )
A.乙可以知道四人的成绩B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,则该几何体的体积$\frac{75}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数$f(x)=\sqrt{{2^x}-a}$的值域为[0,+∞),则a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<xn
(Ⅱ)2xn+1-xn≤$\frac{{x}_{n}{x}_{n+1}}{2}$;
(Ⅲ)$\frac{1}{{2}^{n-1}}$≤xn≤$\frac{1}{{2}^{n-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f($\frac{5π}{8}$)=2,f($\frac{11π}{8}$)=0,且f(x)的最小正周期大于2π,则(  )
A.ω=$\frac{2}{3}$,φ=$\frac{π}{12}$B.ω=$\frac{2}{3}$,φ=-$\frac{11π}{12}$C.ω=$\frac{1}{3}$,φ=-$\frac{11π}{24}$D.ω=$\frac{1}{3}$,φ=$\frac{7π}{24}$

查看答案和解析>>

同步练习册答案