精英家教网 > 高中数学 > 题目详情
11.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.

分析 (1)利用AB∥EF及线面平行判定定理可得结论;
(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.

解答 证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,
所以AB∥EF,
又因为EF?平面ABC,AB⊆平面ABC,
所以由线面平行判定定理可知:EF∥平面ABC;
(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,
因为BC⊥BD,FG∥BC,
所以FG⊥BD,
又因为平面ABD⊥平面BCD,
所以FG⊥平面ABD,所以FG⊥AD,
又因为AD⊥EF,且EF∩FG=F,
所以AD⊥平面EFG,所以AD⊥EG,
故AD⊥AC.

点评 本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.复数z满足$z({\sqrt{3}+i})=1-\sqrt{3}i$,则|z|=(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(x+y)(2x-y)5的展开式中的x3y3系数为 (  )
A.-80B.-40C.40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为14π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.记函数f(x)=$\sqrt{6+x-{x}^{2}}$定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
(1)求b关于a的函数关系式,并写出定义域;
(2)证明:b2>3a;
(3)若f(x),f′(x)这两个函数的所有极值之和不小于-$\frac{7}{2}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(  )
A.10B.12C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sinx-cosx,g(x)=sin2x
(1)试说明由函数y=g(x)的图象经过变换得到函数y=f(x)的图象的变换过程;
(2)若h(x)=f(x)+g(x),求函数h(x)的值域.

查看答案和解析>>

同步练习册答案