精英家教网 > 高中数学 > 题目详情
19.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为14π.

分析 求出球的半径,然后求解球的表面积.

解答 解:长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,可知长方体的对角线的长就是球的直径,
所以球的半径为:$\frac{1}{2}\sqrt{{3}^{2}+{2}^{2}+{1}^{2}}$=$\frac{\sqrt{14}}{2}$.
则球O的表面积为:4×$(\frac{\sqrt{14}}{2})^{2}π$=14π.
故答案为:14π.

点评 本题考查长方体的外接球的表面积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设A={x|x2+2x-8<0},B={x||x-1|<1},则A∪B中元素为整数的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,则满足f(x)+f(x-$\frac{1}{2}$)>1的x的取值范围是($-\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,直线l1的参数方程为$\left\{\begin{array}{l}{x=2+t}\\{y=kt}\end{array}\right.$,(t为参数),直线l2的参数方程为$\left\{\begin{array}{l}{x=-2+m}\\{y=\frac{m}{k}}\end{array}\right.$,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-$\sqrt{2}$=0,M为l3与C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个算法流程图:若输入x的值为$\frac{1}{16}$,则输出y的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4$\sqrt{15}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sin2x+$\sqrt{3}$cosx-$\frac{3}{4}$(x∈[0,$\frac{π}{2}$])的最大值是1.

查看答案和解析>>

同步练习册答案