精英家教网 > 高中数学 > 题目详情
17.若函数$f(x)=\sqrt{{2^x}-a}$的值域为[0,+∞),则a的取值范围是(0,+∞).

分析 由2x>0,得2x-a>-a,结合函数f(x)的值域为[0,+∞),可得-a<0,则a>0.

解答 解:∵2x>0,∴2x-a>-a,
又函数f(x)的值域为[0,+∞),
∴-a<0,则a>0.
∴a的取值范围是(0,+∞).
故答案为:(0,+∞).

点评 本题考查函数的值域,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(  )
A.10B.12C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有(  )
A.12种B.18种C.24种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sinx-cosx,g(x)=sin2x
(1)试说明由函数y=g(x)的图象经过变换得到函数y=f(x)的图象的变换过程;
(2)若h(x)=f(x)+g(x),求函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=\frac{{1+{2^x}}}{{1+{4^x}}}$的值域为(  )
A.$({0,\frac{{\sqrt{2}+1}}{2}}]$B.$({-∞,\frac{{\sqrt{2}+1}}{2}}]$C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知θ∈($\frac{π}{2}$,π),tan(θ-$\frac{π}{4}$)=-$\frac{4}{3}$,则sin(θ+$\frac{π}{4}$)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设△ABC的内角A,B,C的对应边分别为a,b,c,且满足(a-b)(sinA+sinB)=(a-c)sinC.
(1)求角B的大小;
(2)若b=3,求AC边上高h的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在极坐标系中,点A在圆ρ2-2ρcosθ-4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,右顶点为A,离心率为$\frac{1}{2}$.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为$\frac{1}{2}$.
(I)求椭圆的方程和抛物线的方程;
(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为$\frac{\sqrt{6}}{2}$,求直线AP的方程.

查看答案和解析>>

同步练习册答案