精英家教网 > 高中数学 > 题目详情
12.函数$y=\frac{{1+{2^x}}}{{1+{4^x}}}$的值域为(  )
A.$({0,\frac{{\sqrt{2}+1}}{2}}]$B.$({-∞,\frac{{\sqrt{2}+1}}{2}}]$C.(-∞,0]D.(-∞,1]

分析 令2x=t(t>0),则$y=\frac{{1+{2^x}}}{{1+{4^x}}}$=$\frac{1+t}{1+{t}^{2}}$,然后利用导数求得函数的值域.

解答 解:令2x=t(t>0),
则$y=\frac{{1+{2^x}}}{{1+{4^x}}}$=$\frac{1+t}{1+{t}^{2}}$,
∴y′=$\frac{1+{t}^{2}-2t(1+t)}{(1+{t}^{2})^{2}}=\frac{1-2t-{t}^{2}}{(1+{t}^{2})^{2}}$,
由y′=0,得t=-1$-\sqrt{2}$(舍)或t=-1+$\sqrt{2}$.
∴当t∈(0,-1+$\sqrt{2}$)时,y′>0,当t∈(-1+$\sqrt{2}$,+∞)时,y′<0,
∴y=$\frac{1+t}{1+{t}^{2}}$在(0,-1+$\sqrt{2}$)上为增函数,在(-1+$\sqrt{2}$,+∞)上为减函数.
∴当t=-1+$\sqrt{2}$时,y有最大值为$\frac{1-1+\sqrt{2}}{1+(-1+\sqrt{2})^{2}}=\frac{\sqrt{2}+1}{2}$.
又当t→0+时,y→1,当t→+∞时,y→0.
∴$y=\frac{{1+{2^x}}}{{1+{4^x}}}$=$\frac{1+t}{1+{t}^{2}}$的值域为(0,$\frac{\sqrt{2}+1}{2}$].
故选:A.

点评 本题考查利用换元法及导数求函数的最值,考查利用导数研究函数的单调性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=$\sqrt{3}$,∠BAD=120°.
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px过点P(1,1).过点(0,$\frac{1}{2}$)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则(  )
A.乙可以知道四人的成绩B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}中,b1=1,bn+1-bn=2
(1)求数列{an},{bn}的通项an和bn
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数$f(x)=\sqrt{{2^x}-a}$的值域为[0,+∞),则a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(φ>0,-π<φ<0)的最小正周期是π,将f(x)图象向左平移$\frac{π}{3}$个单位长度后,所得的函数图象过点P(0,1),则函数f(x)(  )
A.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减B.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增
C.在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递减D.在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=-8+t}\\{y=\frac{t}{2}}\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=2{s}^{2}}\\{y=2\sqrt{2}}s\end{array}\right.$(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有1080个.(用数字作答)

查看答案和解析>>

同步练习册答案